Thư viện tri thức trực tuyến
Kho tài liệu với 50,000+ tài liệu học thuật
© 2023 Siêu thị PDF - Kho tài liệu học thuật hàng đầu Việt Nam

Tài liệu Frontiers in Number Theory, Physics, and Geometry I ppt
Nội dung xem thử
Mô tả chi tiết
Frontiers in Number Theory, Physics, and Geometry I
Pierre Cartier Bernard Julia
Pierre Moussa Pierre Vanhove (Eds.)
Frontiers in Number Theory,
Physics, and Geometry I
On Random Matrices, Zeta Functions,
and Dynamical Systems
ABC
Pierre Cartier
I.H.E.S.
35 route de Chartres
F-91440 Bures-sur-Yvette
France
e-mail: [email protected]
Bernard Julia
LPTENS
24 rue Lhomond
75005 Paris
France
e-mail: [email protected]
Pierre Moussa
Service de Physique Théorique
CEA/Saclay
F-91191 Gif-sur-Yvette
France
e-mail: [email protected]
Pierre Vanhove
Service de Physique Théorique
CEA/Saclay
F-91191 Gif-sur-Yvette
France
e-mail: [email protected]
Cover photos:
G. Pólya (courtesy of G.L. Alexanderson); Eugene P. Wigner (courtesy of M. Wigner).
Library of Congress Control Number: 2005936349
Mathematics Subject Classification (2000): 11A55, 11K50, 11M41, 15A52, 37C27,
37C30, 58B34, 81Q50, 81R60
ISBN-10 3-540-23189-7 Springer Berlin Heidelberg New York
ISBN-13 978-3-540-23189-9 Springer Berlin Heidelberg New York
This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting,
reproduction on microfilm or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9,
1965, in its current version, and permission for use must always be obtained from Springer. Violations are
liable for prosecution under the German Copyright Law.
Springer is a part of Springer Science+Business Media
springer.com
c Springer-Verlag Berlin Heidelberg 2006
Printed in The Netherlands
The use of general descriptive names, registered names, trademarks, etc. in this publication does not imply,
even in the absence of a specific statement, that such names are exempt from the relevant protective laws
and regulations and therefore free for general use.
Typesetting: by the authors and TechBooks using a Springer LATEX macro package
Cover design: Erich Kirchner, Heidelberg
Printed on acid-free paper SPIN: 10922873 41/TechBooks 543210
Preface
The present book contains fifteen contributions on various topics related to
Number Theory, Physics and Geometry. It presents, together with a forthcoming second volume, most of the courses and seminars delivered at the meeting
entitled “Frontiers in Number Theory, Physics and Geometry”, which took
place at the Centre de Physique des Houches in the french Alps March 9-21,
2003.
The relation between mathematics and physics has a long history. Let us
mention only ordinary differential equations and mechanics, partial differential
equations in solid and fluid mechanics or electrodynamics, group theory is
essential in crystallography, elasticity or quantum mechanics. . .
The role of number theory and of more abstract parts of mathematics
such as topological, differential and algebraic geometry in physics has become
prominent more recently. Diverse instances of this trend appear in the works
of such scientists as V. Arnold, M. Atiyah, M. Berry, F. Dyson, L. Faddeev,
D. Hejhal, C. Itzykson, V. Kac, Y. Manin, J. Moser, W. Nahm, A. Polyakov,
D. Ruelle, A. Selberg, C. Siegel, S. Smale, E. Witten and many others.
In 1989 a first meeting took place at the Centre de Physique des Houches.
The triggering idea was due at that time to the late Claude Itzykson (1938-
1995). The meeting gathered physicists and mathematicians, and was the
occasion of long and passionate discussions.
The seminars were published in a book entitled “Number Theory and
Physics”, J.-M. Luck, P. Moussa, and M. Waldschmidt editors, Springer Proceedings in Physics, Vol. 47, 1990. The lectures were published as a second
book entitled “From Number Theory to Physics”, with C. Itzykson joining
the editorial team, Springer (2nd edition 1995).
Ten years later the evolution of the interface between theoretical physics
and mathematics prompted M. Waldschmidt, P. Cartier and B. Julia to renew the experience. However the emphasis was somewhat shifted to include
in particular selected chapters at the interface of physics and geometry, random matrices or various zeta- and L- functions. Once the project of the new
meeting entitled “Frontiers in Number Theory, Physics and Geometry” received support from the European Union the High level scientific conference
was organized in Les Houches.
VI Preface
The Scientific Committee for the meeting “Frontiers in Number Theory, Physics and Geometry”, was composed of the following scientists: Frits
Beukers, Jean-Benoˆıt Bost, Pierre Cartier, Predrag Cvitanovic, Michel Duflo,
Giovanni Gallavotti, Patricio Leboeuf, Werner Nahm, Ivan Todorov, Claire
Voisin, Michel Waldschmidt, Jean-Christophe Yoccoz, and Jean-Bernard Zuber. The Organizing Committee included:
Bernard Julia (LPTENS, Paris scientific coordinator),
Pierre Moussa (SPhT CEA-Saclay), and
Pierre Vanhove (CERN and SPhT CEA-Saclay).
During two weeks, five lectures or seminars were given every day to about
seventy-five participants. The topics belonged to three main domains:
1. Dynamical Systems, Number theory, and Random matrices,
with lectures by E. Bogomolny on Quantum and arithmetical chaos, J. Conrey
on L-functions and random matrix theory, J.-C. Yoccoz on Interval exchange
maps, and A. Zorich on Flat surfaces;
2. Polylogarithms and Perturbative Physics,
with lectures by P. Cartier on Polylogarithms and motivic aspects, W. Nahm
on Physics and dilogarithms, and D. Zagier on Polylogarithms;
3. Symmetries and Non-pertubative Physics, with lectures by
A. Connes on Galoisian symmetries, zeta function and renormalization,
R. Dijkgraaf on String duality and automorphic forms,
P. Di Vecchia on Gauge theory and D-branes,
E. Frenkel on Vertex algebras, algebraic curves and Langlands program,
G. Moore on String theory and number theory,
C. Soul´e on Arithmetic groups.
In addition seminars were given by participants many of whom could have
given full sets of lectures had time been available. They were: Z. Bern, A.
Bondal, P. Candelas, J. Conway, P. Cvitanovic, H. Gangl, G. Gentile, D.
Kreimer, J. Lagarias, M. Marcolli, J. Marklof, S. Marmi, J. McKay, B. Pioline,
M. Pollicott, H. Then, E. Vasserot, A. Vershik, D. Voiculescu, A. Voros, S.
Weinzierl, K. Wendland, A. Zabrodin.
We have chosen to reorganize the written contributions in two parts according to their subject. These naturally lead to two different volumes. The
present volume is the first one, let us now briefly describe its contents.
This volume is itself composed of three parts including each lectures and
seminars covering one theme. In the first part, we present the contributions
on the theme “Random matrices : from Physics to Number Theory”. It begins
with lectures by E. Bogomolny, which review three selected topics of quantum chaos, namely trace formulas with or without chaos, the two-point spectral correlation function of Riemann zeta function zeroes, and the two-point
spectral correlation functions of the Laplace-Beltrami operator for modular
Preface VII
domains leading to arithmetic chaos. The lectures can serve as a non-formal
introduction to mathematical methods of quantum chaos. A general introduction to arithmetic groups will appear in the second volume. There are then
lectures by J. Conrey who examines relations between random-matrix theory
and families of arithmetic L-functions (mostly in characteristics zero), that is
Dirichlet series satisfying functional equations similar to those obeyed by the
Riemann zeta-function. The relevant L-functions are those associated with
cusp-forms. The moments of L-functions are related to correlation functions
of eigenvalues of random matrices.
Then follow a number of seminar presentations: by J. Marklof on some
energy level statistics in relation with almost modular functions; by H. Then
on arithmetic quantum chaos in a particular three-dimensional hyperbolic
domain, in relation to Maass waveforms. Next P. Wiegmann and A. Zabrodin
study the large N expansion for normal and complex matrix ensembles. D.
Voiculescu reviews symmetries of free probability models. Finally A. Vershik
presents some random (resp. universal) graphs and metric spaces.
In the second part “Zeta functions: a transverse tool”, the theme is zetafunctions and their applications.
First the lectures by A. Connes were written up in collaboration with M.
Marcolli and have been divided into two parts.
The second one will appear in the second volume as it relates to renormalization of quantum field theories. In their first chapter they introduce
the noncommutative space of commensurability classes of Q-lattices and the
arithmetic properties of KMS states in the corresponding quantum statistical
mechanical system. In the 1-dimensional case this space gives the spectral
realization of zeroes of zeta-functions. They give a description of the multiple
phase transitions and arithmetic spontaneous symmetry breaking in the case
of Q-lattices of dimension two. The system at zero temperature settles onto a
classical Shimura variety, which parametrizes the pure phases of the system.
The noncommutative space has an arithmetic structure provided by a rational subalgebra closely related to the modular Hecke algebra. The action of
the symmetry group involves the formalism of superselection sectors and the
full noncommutative system at positive temperature. It acts on values of the
ground states at the rational elements via the Galois group of the modular
field.
Then we report seminars given by A. Voros on zeta functions built on
Riemann zeroes; by J. Lagarias on Hilbert spaces of entire functions and
Dirichlet L-functions; and by M. Pollicott on Dynamical zeta functions and
closed orbits for geodesic and hyperbolic flows.
In the third part “ Dynamical systems: interval exchanges, flat surfaces and
small divisors”, are gathered all the other contributions on dynamical systems.
The lectures by A. Zorich provide an extensive self-contained introduction to
the geometry of Flat surfaces which allows a description of flows on compact
VIII Preface
Riemann surfaces of arbitrary genus. The course by J.-C. Yoccoz analyzes
Interval exchange maps such as the first return maps of these flows. Ergodic
properties of maps are connected with ergodic properties of flows. This leads
to a generalization to surfaces of higher genus of the irrational flows on the
two dimensional torus. The adaptation of a continued fraction like algorithm
to this situation is a prerequisite to extension of small divisors techniques to
higher genus cases.
Finally we conclude this volume with seminars given by G. Gentile on Brjuno numbers and dynamical systems and by S. Marmi on Real and Complex
Brjuno functions. In both talks either perturbation of irrational rotations or
twist maps are considered, with fine details on arithmetic conditions (Brjuno
condition and Brjuno numbers) for stability of trajectories under perturbations of parameters, and on the size of stability domains in the parametric
space (Brjuno functions).
The following institutions are most gratefully acknowledged for their generous financial support to the meeting:
D´epartement Sciences Physiques et Math´ematiques and the Service de
Formation permanente of the Centre National de la Recherche Scientifique;
Ecole Normale Sup´ ´ erieure de Paris; D´epartement des Sciences de la mati`ere du
Commissariat `a l’Energie Atomique; Institut des Hautes Etudes Scientifiques; ´
National Science Foundation; Minist`ere de la Recherche et de la Technologie and Minist`ere des Affaires Etrang` ´ eres; The International association of
mathematical physics and most especially the Commission of the European
Communities.
Three European excellence networks helped also in various ways. Let
us start with the most closely involved “Mathematical aspects of Quantum
chaos”, but the other two were “Superstrings” and “Quantum structure of
spacetime and the geometric nature of fundamental interactions”.
On the practical side we thank CERN Theory division for allowing us
to use their computers for the webpage and registration process. We are also
grateful to Marcelle Martin, Thierry Paul and the staff of les Houches for their
patient help. We had the privilege to have two distinguished participants:
C´ecile de Witt-Morette (founder of the Les Houches School) and the late
Bryce de Witt whose communicative and critical enthusiasm were greatly
appreciated.
Paris, July 2005 Bernard Julia
Pierre Cartier
Pierre Moussa
Pierre Vanhove
List of Contributors
List of Authors: (following the order of appearance of the contributions)
• E. Bogomolny, Laboratoire de Physique Th´eorique et Mod`eles Statistiques
Universit´e de Paris XI, Bˆat. 100, 91405 Orsay Cedex, France
• J. Brian Conrey, American Institute of Mathematics, Palo Alto, CA, USA
• Jens Marklof, School of Mathematics, University of Bristol, Bristol BS8
1TW, U.K.
• H. Then, Abteilung Theoretische Physik, Universit¨at Ulm, Albert-EinsteinAllee 11, 89069 Ulm, Germany
• A. Zabrodin, Institute of Biochemical Physics, Kosygina str. 4, 119991
Moscow, Russia and ITEP, Bol. Cheremushkinskaya str. 25, 117259 Moscow,
Russia
P. Wiegmann, James Frank Institute and Enrico Fermi Institute of the
University of Chicago, 5640 S.Ellis Avenue, Chicago, IL 60637, USA
Landau Institute for Theoretical Physics, Moscow, Russia
• D. Voiculescu, Department of Mathematics University of California at
Berkeley Berkeley, CA 94720-3840, USA
• A.M. Vershik, St.Petersburg Mathematical Institute of Russian Academy
of Science Fontanka 27 St.Petersburg, 191011, Russia
• A. Connes, Coll`ege de France, 3, rue Ulm, F-75005 Paris, France
I.H.E.S. 35 route de Chartres F-91440 Bures-sur-Yvette, France
M. Marcolli, Max–Planck Institut f¨ur Mathematik, Vivatsgasse 7, D-53111
Bonn, Germany
• A. Voros, CEA, Service de Physique Th´eorique de Saclay (CNRS URA
2306) F-91191 Gif-sur-Yvette Cedex, France
• J.C. Lagarias, Department of Mathematics, University of Michigan, Ann
Arbor,MI 48109-1109 USA
• M. Pollicott, Department of Mathematics, Manchester University, Oxford
Road, Manchester M13 9PL UK
• J.-C. Yoccoz, Coll`ege de France, 3 Rue d’Ulm, F-75005 Paris, France
• A. Zorich, IRMAR, Universit´e de Rennes 1, Campus de Beaulieu, 35042
Rennes, France
• G. Gentile, Dipartimento di Matematica, Universit`a di Roma Tre, I-00146
Roma, Italy
• S.Marmi, Scuola Normale Superiore, Piazza dei Cavalieri 7, I-56126 Pisa,
Italy
X List of Contributors
P. Moussa, Service de Physique Th´eorique, CEA/Saclay, F-91191 Gif-surYvette, France
J.-C. Yoccoz, Coll`ege de France, 3 Rue d’Ulm, F-75005 Paris, France
Editors:
• Bernard Julia, LPTENS, 24 rue Lhomond 75005 Paris, France, e-mail:
• Pierre Cartier, I.H.E.S. 35 route de Chartres F-91440 Bures-sur-Yvette,
France, e-mail: [email protected]
• Pierre Moussa, Service de Physique Th´eorique, CEA/Saclay, F-91191 Gifsur-Yvette, France, e-mail: [email protected]
• Pierre Vanhove, Service de Physique Th´eorique, CEA/Saclay, F-91191 Gifsur-Yvette, France
Contents
Part I Random Matrices: from Physics to Number Theory
Quantum and Arithmetical Chaos
Eugene Bogomolny ............................................... 3
Notes on L-functions and Random Matrix Theory
J. Brian Conrey ................................................. 107
Energy Level Statistics, Lattice Point Problems, and Almost
Modular Functions
Jens Marklof .................................................... 163
Arithmetic Quantum Chaos of Maass Waveforms
H. Then ........................................................ 183
Large N Expansion for Normal and Complex Matrix
Ensembles
P. Wiegmann, A. Zabrodin ........................................ 213
Symmetries Arising from Free Probability Theory
Dan Voiculescu .................................................. 231
Universality and Randomness for the Graphs and Metric
Spaces
A. M. Vershik ................................................... 245
Part II Zeta Functions
From Physics to Number Theory via Noncommutative
Geometry
Alain Connes, Matilde Marcolli .................................... 269
XII Contents
More Zeta Functions for the Riemann Zeros
Andr´e Voros ..................................................... 351
Hilbert Spaces of Entire Functions and Dirichlet L-Functions
Jeffrey C. Lagarias ............................................... 367
Dynamical Zeta Functions and Closed Orbits for Geodesic
and Hyperbolic Flows
Mark Pollicott ................................................... 381
Part III Dynamical Systems: interval exchange, flat surfaces, and
small divisors
Continued Fraction Algorithms for Interval Exchange Maps:
an Introduction
Jean-Christophe Yoccoz ........................................... 403
Flat Surfaces
Anton Zorich .................................................... 439
Brjuno Numbers and Dynamical Systems
Guido Gentile ................................................... 587
Some Properties of Real and Complex Brjuno Functions
Stefano Marmi, Pierre Moussa, Jean-Christophe Yoccoz ............... 603
Part IV Appendices
List of Participants . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 629
Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 633
Part I
Random Matrices: from Physics to Number
Theory
Quantum and Arithmetical Chaos
Eugene Bogomolny
Laboratoire de Physique Th´eorique et Mod`eles Statistiques
Universit´e de Paris XI, Bˆat. 100, 91405 Orsay Cedex, France
Summary. The lectures are centered around three selected topics of quantum
chaos: the Selberg trace formula, the two-point spectral correlation functions of
Riemann zeta function zeros, and the Laplace–Beltrami operator for the modular
group. The lectures cover a wide range of quantum chaos applications and can serve
as a non-formal introduction to mathematical methods of quantum chaos.
Introduction .............................................. 5
I Trace Formulas ........................................... 7
1 Plane Rectangular Billiard ................................ 7
2 Billiards on Constant Negative Curvature Surfaces . . . . . . . . 15
2.1 Hyperbolic Geometry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
2.2 Discrete groups . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
2.3 Classical Mechanics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
2.4 Quantum Problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
2.5 Construction of the Green Function . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
2.6 Density of State . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
2.7 Conjugated Classes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
2.8 Selberg Trace Formula . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
2.9 Density of Periodic Orbits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
2.10 Selberg Zeta Function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
2.11 Zeros of the Selberg Zeta Function. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
2.12 Functional Equation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
3 Trace Formulas for Integrable Dynamical Systems . . . . . . . . 33
3.1 Smooth Part of the Density . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
3.2 Oscillating Part of the Density . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
4 Trace Formula for Chaotic Systems . . . . . . . . . . . . . . . . . . . . . . . 36
4.1 Semiclassical Green Function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
4 Eugene Bogomolny
4.2 Gutzwiller Trace Formula . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
5 Riemann Zeta Function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
5.1 Functional Equation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
5.2 Trace Formula for the Riemann Zeros . . . . . . . . . . . . . . . . . . . . . . . . . . 43
5.3 Chaotic Systems and the Riemann Zeta Function . . . . . . . . . . . . . . . . 46
6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
II Statistical Distribution of Quantum Eigenvalues . . . . . . . . . . . 49
1 Correlation Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
1.1 Diagonal Approximation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
1.2 Criterion of Applicability of Diagonal Approximation . . . . . . . . . . . . 55
2 Beyond the Diagonal Approximation . . . . . . . . . . . . . . . . . . . . . . 58
2.1 The Hardy–Littlewood Conjecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
2.2 Two-Point Correlation Function of Riemann Zeros . . . . . . . . . . . . . . . 64
3 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
III Arithmetic Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
1 Modular group . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
2 Arithmetic Groups . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
2.1 Algebraic Fields . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
2.2 Quaternion Algebras . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
2.3 Criterion of Arithmeticity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
2.4 Multiplicities of Periodic Orbits for General Arithmetic Groups . . . 82
3 Diagonal Approximation for Arithmetic Systems . . . . . . . . . . 85
4 Exact Two-Point Correlation Function for the Modular
Group . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
4.1 Basic Identities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
4.2 Two-Point Correlation Function of Multiplicities . . . . . . . . . . . . . . . . 89
4.3 Explicit Formulas . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92
4.4 Two-Point Form Factor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93
5 Hecke Operators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94
6 Jacquet–Langlands Correspondence . . . . . . . . . . . . . . . . . . . . . . . 98
7 Non-arithmetic Triangles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99
8 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103