Thư viện tri thức trực tuyến
Kho tài liệu với 50,000+ tài liệu học thuật
© 2023 Siêu thị PDF - Kho tài liệu học thuật hàng đầu Việt Nam

Tài liệu Edited by-I -Timothy D. Burchell Carbon Materials for Advanced Technologies doc
Nội dung xem thử
Mô tả chi tiết
Edited by -I -
Timothy D. Burchell *
Carbon Materials
for Advanced
Technologies
Carbon Materials
for Advanced
Technologies
Edited by
Timothy D. Burchell
Oak Ridge, National Laboratory
Oak Ridge, TN 37831 -6088 U.S.A.
1999
PERGAMON
An Imprint of Elsevier Science
Amsterdam - Lausanne - New York - Oxford - Shannon - Singapore - Tokyo
ELSEVIER SCIENCE Ltd
The Boulevard, Langford Lane
Kidlington, Oxford 0x5 IGB, UK
@ 1999 Elsevier Science Ltd. All rights reserved.
This work is protected under copyright by Elsevier science, and the following terms and conditions apply
to its use:
Photocopying
Slngle photocopies of single chapters may be made for personal use as allowed by national copyright laws.
Permission of the Publisher and payment of a fee is required for all other photocopying, including multiple or systematic copying, copying for advertising or promotional purposes, resale, and all forms of
document delivery. Special rates are available for educational institutions that wish to make photocopies for non-profit educational classroom use.
Permissions may be sought directly from Elsevier science Rights & Permissions Department, PO Box 800,
Oxford OX5 IDX, UK; phone: (+44) 1865 843830, fax: (+44) 1865 853333, e-mail: [email protected]. You may also contact Rights & Permissions directly through Elsevier's home page (http://www.elsevier.nl), selecting first 'Customer Support', then 'General Information', then 'Permissions Query Form'.
In the USA, users may clear permissions and make payments through the Copyright Clearance Center, Inc.,
222 Rosewood Drive, Danvers, MA 01923, USA phone: (978) 7508400, fax: (978) 7504744, and in the UK
through the Copyright Licensing Agency Rapid clearance Service (CLARCS), 90 Tottenham court Road,
London WIP OLP, UK; phone: (+44) 171 631 5555; fax: (+44) 171 631 5500. other countries may have a local
reprographic rights agency for payments.
Derivative Works
Tables of contents may be reproduced for internal circulation, but Permission of Elsevier Science is
required for external resale or distribution of such material.
Permission of the Publisher is required for all other derivative works, including compilations and
translations.
Electronic storage or usage Permission of the Publisher is required to store or use electronically any material contained in this work,
including any chapter or part of a chapter.
Except as outlined above, no part of this work may be reproduced, stored in a retrieval system or
transmitted in any form or by any means, electronic, mechanical, photocopying, recording or otherwise,
without prior written permission of the Publisher.
Address permissions requests to: Elsevier Science Rights & Permissions Department, at the mail, fax and
e-mail addresses noted above.
Notice
No responsibility is assumed by the Publisher for any injury and/or damage to persons or property as a
matter of Products liability, negligence or otherwise, or from any use or operation of any methods,
Products, instructions or ideas contained in the material herein. Because of rapid advances in the medical
sciences, in particular, independent verification of diagnoses and drug dosages should be made.
First edition 1999
Library of congress Cataloging in Publication Data
A catalog record from the Library of Congress has been applied for.
British Library cataloguing in publication Data
A catalogue record from the British Library has been applied for.
ISBN 0-08-042683-2
@ The paper used in this Publication meets the requirements of ANSI/NISO 239.48-1992
(Permanence of Paper).
Printed in The Netherlands.
Contents
Gon~ibutors ................................................... xi
Acknowledgments ............................................. xiii
pref~ce ....................................................... xv
1 Structure and Bonding in Carbon Materials ..................... P
Brian Me ..E naney
1 Introduction ............................................. 1
2 Crystalline Forms of Carbon ................................ 3
3 The Phase and Transition Diagram for Carbon ................. 12
4 CarbonFilms ........................................... 14
5 Carbon Nanoparticles .................................... 18
6 Engineering Carbons ..................................... 20
7 ConcludingRemarks ..................................... 28
8 Acknowledgments ....................................... 29
9 References ............................................. 29
2 Fullerenes and Nanotubes ................................... 39
Mildred S . Dresselhaus . Peter C . Eklund and Gene Dresselhaus
1 Introduction ............................................ 35
2
4 Applications ............................................ 84
5 Acknowledgments ....................................... 87
6 References ............................................. 87
Fullerenes and Fullerene-based Solids ........................ 37
3 Carbon Nanotubes ....................................... 61
3 Active Carbon Fibers ....................................... 95
Timothy J. Mays
1 Introduction ............................................ 95
2 Background ............................................ 96
3
5 Acknowledgments ...................................... 111
6 References ............................................ 111
Applications of Active Carbon Fibers ....................... 101
4 ConcludingRemarks .................................... 110
vi
4 High Performance Carbon Fibers ............................ 119
Dan D . Edie and John J . McHugh
Introduction ........................................... 119
Processing Carbon Fibers from Polyacrylonitrile .............. 119
High Performance Carbon Fibers from Novel Precursors ........ 133
Carbon Fiber Property Comparison ......................... 133
Current Areas for High Performance Carbon Fiber Research ..... 134
Summary and Conclusions ............................... 135
References ............................................ 135
Carbon Fibers from Mesophase Pitch ....................... 123
5 Vapor Grown Carbon Fiber Composites ...................... 139
Max L . Lake and Jyh-Ming Ting
Introduction ........................................... 139
CurrentForms ......................................... 142
Fiberproperties ........................................ 144
Composite Properties .................................... 146
Potential Applications ................................... 158
Manufacturing Issues .................................... 160
Conclusions ........................................... 164
References ............................................ 165
6 Porous Carbon Fiber-Carbon Binder Composites ............... 169
Timothy D . Burchell
Introduction ........................................... 169
Manufacture ........................................... 169
Carbon Bonded Carbon Fiber ............................. 173
Damage Tolerant Light Absorbing Materials ................. 181
Summary and Conclusions ............................... 200
Acknowledgments ...................................... 201
References ............................................ 201
Carbon Fiber Composite Molecular Sieves ................... 183
7 Coal-DerivedCarbons ..................................... 205
Peter G . Stansberry. John W . Zondlo and Alfred H . Stiller
1 Review of Coal Derived Carbons .......................... 205
2 SolventExtractionofCoal ................................ 211
3 Preparation and Characteristics of Cokes Produced from Solvent
Extraction ............................................. 223
4 Preparation and Evaluation of Graphite from Coal-Derived
Feedstocks ............................................ 229
5 Summary ............................................. 233
6 Acknowledgments ...................................... 233
7 References ............................................ 233
8 Activated Carbon for Automotive Applications ................. 235
Philip J. Johnson. David J. Setsuda and Roger S . Williams
Background ........................................... 235
Activated Carbon ....................................... 239
Vehicle Fuel Vapor Systems .............................. 244
Adsorption ............................................ 246
Carbon Canister Design .................................. 252
Application of Canisters in Running Loss Emission Control ..... 257
Application of Canisters in ORVR Control ................... 263
Summary and Conclusions ............................... 265
References ............................................ 266
9 Adsorbent Storage for Natural Gas Vehicles ................... 269
Terv L . Cook. Costa Komodromos. David F . Quinn and
Steve Ragun
1 Introduction ........................................... 269
2 Storage of Natural Gas ................................... 274
3 Adsorbents ............................................ 280
4 Adsorbent Fill-Empty Testing ............................. 293
5 GuardBeds ........................................... 294
6 Summary ............................................. 298
7 References ............................................ 299
...
vlll
10 Adsorption Refrigerators and Heat Pumps .................... 303
Robert E . Critoph
1
3
4
5
7 References ............................................ 339
Why Adsorption Cycles? ................................. 303
2 The Basic Adsorption Cycle .............................. 306
Basic Cycle Analysis and Results .......................... 313
Choice of Refrigerant . Adsorbent Pairs ..................... 319
Improving Cost Effectiveness ............................. 322
6 Summary and Conclusions ............................... 339
11 Applications of Carbon in Lithium-Ion Batteries ............... 341
Tao Zheng and Jeff Dahn
1 . Introduction ........................................... 341
2 . Useful Characterization Methods ........................... 347
3 . GraphiticCarbons ...................................... 353
4 . Hydrogen-Containing Carbons from Pyrolyzed Organic Precursors 358
5 . Microporous Carbons from Pyrolyzed Hard-Carbon Precursors ... 375
6 . Carbons Used in Commercial Applications ................... 384
7 . References ............................................ 385
12 Fusion Energy Applications ................................. 389
Lance L . Snead
1 . Introduction ........................................... 389
2 .
3 . Irradiation Effects on Thennophysical Properties of Graphite and
Carbon Fiber Composites ................................ 400
4 . Plasma Wall Interactions ................................. 412
5 . Tritium Retention in Graphite ............................. 420
6 . Summary and Conclusions ............................... 424
7 . Acknowledgments ...................................... 424
8 . References ............................................ 425
The Advantages of Carbon as a Plasma-Facing Component ...... 394
ix
13 Fission Reactor Applications of Carbon ....................... 429
Timothy D . Burchell
1 . The Role of Carbon Materials in Fission Reactors ............. 429
2 . Graphite Moderated Power Producing Reactors ............... 438
3 . Radiation Damage in Graphite ............................. 458
4 . RadiolyticOxidation .................................... 469
5 . ............. 473
6 . Summary and Conclusions ............................... 477
7 . Acknowledgments ...................................... 478
8 . References ............................................ 478
Other Applications of Carbon in Fission Reactors
14 Fracture in Graphite ....................................... 485
Glenn R . Romanoski and Timothy D . Burchell
1 .
2 .
3 .
4 .
5 .
6 .
7 .
8 .
9 .
Introduction ........................................... 485
Studies and Models of Fracture Processes in Graphite .......... 486
Linear Elastic Fracture Mechanics Behavior of Graphite ........ 4911
Elastic-plastic Fracture Mechanics Behavior of Graphite ........ 497
Fracture Behavior of Small Flaws in Nuclear Graphites ......... 503
Summary and Conclusions ............................... 530
Acknowledgments ...................................... 531
References ............................................ 532
The Burchell Fracture Model .............................. 515
Index ....................................................... 539
xi
Contributors
Timothy D. Burchell, Metals and Ceramics Division, Oak Ridge National
Laboratory, Oak Ridge, Tennessee 37831, USA
Terry L. Cook, Atlanta Gas Light Company, P.O. Box 4569, Atlanta, Georgia
30302, USA
Robert E. Critoph, Department of Engineering, University of Warwick, Coventry
CV4 7AL, United Kingdom
Jeff Dah, Department of Physics, Dalhousie University, Hulga, Nova Scotia
B3H 3J5, Canada
Gene Dresselhaus, Francis Bitter Magnet Laborato ry, Massachusetts Institute of
Technology, Cambridge, Massachusetts 02139, USA
Mildred S. Dresselhaus, Department of Electrical Engineering and Computer
Science and Department of Physics, Massachusetts Institute of Technology,
Cambridge, Massachusetts 02139, USA
Dan D. Edie, Department of Chemical Engineering, Clemson University,
Clemson, South Carolina 29634, USA
Peter C. Eklund, Department of Physics and Astronomy and Center for Applied
Energy Research, University of Kentucky, Lexington, Kentucky 40506, USA
Philip J. Johnson, Ford Motor Company, Automotive Components Division,
Schaefer Court II, 14555 Rotunda Drive, Dearborn, Michigan 48120, USA
Costa Komodromos, Gas Research Centre, British Gas, Ashby Road,
Loughborough, Leicestershire LEI 1 36U, United Kingdom
Max L. Lake, Applied Sciences, Inc. I41 West Xenia Avenue, Cederville, Ohio
45314, USA
Timothy J. Mays, School of Materials Science and Engineering, University of
Bath, Bath BA2 7AY, United Kingdom
Brian McEnaney, School of Materials Science and Engineering, University of
Bath, Bath BA2 7AY, United Kingdom
John J. McHugh, Hexcel Corporation, Hercules Research Center, Wilmington,
Delaware 19808, USA
David F. Quinn, Royal Military College, Kingston, Ontario K7K 5L0, Canada
Steve Ragan, Sutclifle Speakman Carbons Ltd., Lockett Road, Ashton in
Make@eld, Lancashire wN4 &DE, United Kingdom
Glenn R. Romanoski, Metals and Ceramics Division, Oak Ridge National
Laboratory, Oak Ridge, Tennessee 37831, USA
David J. Setsuda, Ford Motor Company, Automotive Components Division,
Schaefer Court II, 14555 Rotunda Drive, Dearborn, Michigan 48120, USA
Lance L. Snead, Metals and Ceramics Division, Oak Ridge National
Laboratory, Oak Ridge, Tennessee 37831, USA
xii
Peter G. Stansberry, Department of Chemical Engineering, West Virginia
University, Morgantown, West Virginia 26502, USA
Alfred H. Stiller, Department of Chemical Engineering, West Virginia
University, Morgantown, West Virginia 26502, USA
Jyh-Ming Ting, Department of Materials Science and Engineering, National
Cheng Kung Universiv, Tainan, Taiwan
Roger S. Williams, Westvaco Corporation, Washington Street, Covington,
Virginia 24426, USA
Tao Zheng, Department of Physics, Simon Frmer University, Burnaby, British
Columbia VA5 1S6, Canada
John W. Zondlo, Department ofChemica1 Engineering, West Virginia
University, Morgantown, West Virginia 26502, USA