Thư viện tri thức trực tuyến
Kho tài liệu với 50,000+ tài liệu học thuật
© 2023 Siêu thị PDF - Kho tài liệu học thuật hàng đầu Việt Nam

Tài liệu Alternative Investments and Stratagies doc
Nội dung xem thử
Mô tả chi tiết
7373tpPath.indd 1 5/19/10 3:29:55 PM
May 13, 2010 10:6 WSPC/SPI-B913 b913-fm FA
This page intentionally left blank
World Scientific
7373tpPath.indd 2 5/19/10 3:29:56 PM
Library of Congress Cataloging-in-Publication Data
Alternative investments and strategies / edited by Rüdiger Kiesel, Matthias Scherer & Rudi Zagst.
p. cm.
ISBN-13: 978-9814280105
ISBN-10: 9814280100
1. Investments--Moral and ethical aspects. 2. Portfolio management--Moral and ethical aspects.
I. Kiesel, Rüdiger, 1962– II. Scherer, Matthias. III. Zagst, Rudi, 1961–
HG4515.13.A498 2010
332.6--dc22
2010013167
British Library Cataloguing-in-Publication Data
A catalogue record for this book is available from the British Library.
For photocopying of material in this volume, please pay a copying fee through the Copyright
Clearance Center, Inc., 222 Rosewood Drive, Danvers, MA 01923, USA. In this case permission to
photocopy is not required from the publisher.
Typeset by Stallion Press
Email: [email protected]
All rights reserved. This book, or parts thereof, may not be reproduced in any form or by any means,
electronic or mechanical, including photocopying, recording or any information storage and retrieval
system now known or to be invented, without written permission from the Publisher.
Copyright © 2010 by World Scientific Publishing Co. Pte. Ltd.
Published by
World Scientific Publishing Co. Pte. Ltd.
5 Toh Tuck Link, Singapore 596224
USA office: 27 Warren Street, Suite 401-402, Hackensack, NJ 07601
UK office: 57 Shelton Street, Covent Garden, London WC2H 9HE
Printed in Singapore.
Juliet - Alternative Investments.pmd 1 8/2/2010, 6:18 PM
May 13, 2010 10:6 WSPC/SPI-B913 b913-fm FA
PREFACE
Asset allocation investigates the optimal division of a portfolio among different asset
classes. Standard theory involves the optimal mix of risky stocks, bonds, and cash
together with various subdivisions of these asset classes. Underlying this is the insight
that diversification allows for achieving a balance between risk and return: by using
different types of investment, losses may be limited and returns are made less volatile
without losing too much potential gain.
These insights are made precise using the benchmark theory of mathematical
finance, the Black-Scholes-Merton theory, based on Brownian motion as the driving
noise process for risky asset prices. Here, the distributions of financial returns of the
risky assets in a portfolio are multivariate normal, thus relating to the standard meanvariance portfolio theory of Markowitz with its risk-return paradigm as above.
Recent years have seen many empirical studies shedding doubt on the BlackScholes-Merton model, and motivating various alternative modeling approaches,
which were able to reproduce the stylized facts of asset returns (such as heavy tails and
volatility clustering) much better. Also, various new asset classes and specific financial
tools for achieving better diversification have been created and entered the investment
universe.
This book combines academic research and practical expertise on these new (often
called alternative) assets and trading strategies in a unique way. We include the practitioners’ viewpoint on new asset classes as well as academic research on modeling
approaches, for new asset classes. In particular, alternative asset classes such as power
forward contracts, forward freight agreements, and investment in photovoltaic facilities are discussed in detail, both on a stand-alone basis and with a view to their
effects on diversification in combination with classical asset. We also analyse creditrelated portfolio instruments and their effect in achieving an optimal asset allocation.
In this context, we highlight aspects of financial structures which may sometimes be
neglected, such as default risk of issuer in case of certificates or the role that model
v
May 13, 2010 10:6 WSPC/SPI-B913 b913-fm FA
vi Preface
risk plays within asset allocation problems. This leads naturally to the use of robust
asset allocation strategies.
Extending the classical mean-variance portfolio setting, we include dynamic portfolio strategies and illustrate different portfolio protection strategies. In particular, we
compare the benefits of such strategies and investigate conditions under which Constant Proportion Portfolio Insurance (CPPI) may be prefered to Option-Based Portfolio
Insurance (OBPI) and vice versa. We also contribute to the understanding of gap risk
by analyzing this risk for CPPI and Constant Proportion Debt Obligations (CPDO) in
a sophisticated modeling framework. Such analyses are supplemented and extended
by an investigation of the optimality of hedging approaches such as variance-optimal
hedging and semistatic variants of classical hedging strategies.
Many of the articles can serve as guides for the implementation of various models.
In addition, we also present state-of-the-art models and explain modern tools from
financial mathematics, such as Markov-Switching models, time-changed Lévy models,
variants of lognormal approximations, and copula structures.
This books combines a unique mix of authors.Also many of our students improved
the outcome of the project with critical and insightful comments. Particular thanks goes
to Georg Grüll, Peter Hieber, Julia Kraus, Matthias Lutz, Jan-Frederik Mai, Kathrin
Maul, Kevin Metka, Daniela Neykova, Johannes Rauch,Andreas Rupp, Daniela Selch,
and Christofer Vogt.
R. Kiesel, M. Scherer, and R. Zagst
May 13, 2010 10:6 WSPC/SPI-B913 b913-fm FA
CONTENTS
Preface v
Part I. Alternative Investments
Chapter 1. Socially Responsible Investments 3
Sven Hroß, Christofer Vogt and Rudi Zagst
1.1 Introduction ................................. 4
1.2 Recent Research on SRI .......................... 5
1.3 How Sustainable is Sustainability? ..................... 6
1.3.1 Description of the Dataset ..................... 6
1.3.2 Introduction to Markov Transition Matrices ............ 6
1.3.3 Results of Markov Transition Matrices .............. 7
1.4 SRI in Portfolio Context .......................... 8
1.4.1 Description of the Dataset and Statistical Properties ....... 8
1.4.2 Markov-Switching Model . . . . . . . . . . . . . . . . . . . . . 11
1.4.3 Fitting the Model Parameters . . . . . . . . . . . . . . . . . . . 11
1.4.4 Simulation of Returns . . . . . . . . . . . . . . . . . . . . . . . 13
1.4.5 Portfolio Optimization Models . . . . . . . . . . . . . . . . . . 13
1.4.6 Definition of Investor Types . . . . . . . . . . . . . . . . . . . . 15
1.4.7 Optimal Portfolios . . . . . . . . . . . . . . . . . . . . . . . . . 15
1.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
Chapter 2. Listed Private Equity in a Portfolio Context 21
Philipp Aigner, Georg Beyschlag, Tim Friederich,
Markus Kalepky and Rudi Zagst
2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
2.2 Defining Private Equity Categories . . . . . . . . . . . . . . . . . . . . . 23
2.2.1 Financing Stages . . . . . . . . . . . . . . . . . . . . . . . . . . 23
2.2.2 Divestment Strategies . . . . . . . . . . . . . . . . . . . . . . . 24
vii
May 13, 2010 10:6 WSPC/SPI-B913 b913-fm FA
viii Contents
2.2.3 Type of Financing . . . . . . . . . . . . . . . . . . . . . . . . . 25
2.2.4 Classification of Private Equity Fund Investments . . . . . . . . 26
2.2.4.1 Venture capital funds . . . . . . . . . . . . . . . . . . . 26
2.2.4.2 Buyout funds . . . . . . . . . . . . . . . . . . . . . . . 27
2.2.4.3 Leveraged buyouts (LBO) . . . . . . . . . . . . . . . . 27
2.3 Investment Possibilities — One Asset, Many Classes . . . . . . . . . . . 28
2.3.1 Direct Investments . . . . . . . . . . . . . . . . . . . . . . . . . 28
2.3.2 Private Equity Funds . . . . . . . . . . . . . . . . . . . . . . . . 29
2.3.2.1 Key players . . . . . . . . . . . . . . . . . . . . . . . 29
2.3.3 Cash Flow Structure of a Private Equity Fund . . . . . . . . . . . 31
2.3.4 Fund-of-Funds . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
2.3.4.1 Structure of a private equity fund-of-funds . . . . . . . 32
2.3.4.2 Advantages . . . . . . . . . . . . . . . . . . . . . . . . 32
2.3.4.3 Disadvantages . . . . . . . . . . . . . . . . . . . . . . 33
2.3.5 Publicly Traded Private Equity . . . . . . . . . . . . . . . . . . 33
2.3.6 Secondary Transactions . . . . . . . . . . . . . . . . . . . . . . 34
2.3.6.1 Types of secondary transactions . . . . . . . . . . . . . 34
2.3.6.2 Buyer’s motivation . . . . . . . . . . . . . . . . . . . . 35
2.4 Private Equity as Alternative Asset Class
in an Investment Portfolio . . . . . . . . . . . . . . . . . . . . . . . . . 35
2.4.1 Characteristics of LPE Return Series . . . . . . . . . . . . . . . 36
2.4.2 Modeling Return Series with Markov-Switching Processes . . . . 37
2.4.2.1 Markov–Switching models . . . . . . . . . . . . . . . 37
2.4.2.2 Fitting the parameters . . . . . . . . . . . . . . . . . . 39
2.4.2.3 Simulation of return paths . . . . . . . . . . . . . . . . 40
2.4.3 Listed Private Equity in Asset Allocation . . . . . . . . . . . . . 40
2.4.3.1 Performance measurement . . . . . . . . . . . . . . . . 40
2.4.3.2 Portfolio optimization frameworks . . . . . . . . . . . 42
2.4.3.3 Definition of investor types . . . . . . . . . . . . . . . 43
2.4.3.4 Optimization of portfolios . . . . . . . . . . . . . . . . 44
2.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
Chapter 3. Alternative Real Assets in a Portfolio Context 51
Wolfgang Mader, Sven Treu and SebastianWillutzky
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
3.2 Overview on Alternative Real Assets . . . . . . . . . . . . . . . . . . . . 52
3.3 Modeling Photovoltaic Investments . . . . . . . . . . . . . . . . . . . . 53
3.3.1 General Approach . . . . . . . . . . . . . . . . . . . . . . . . . 53
3.3.2 Definition of the Investment Project . . . . . . . . . . . . . . . . 54
May 13, 2010 10:6 WSPC/SPI-B913 b913-fm FA
Contents ix
3.3.3 Modeling of Risk Factors . . . . . . . . . . . . . . . . . . . . . 56
3.3.3.1 Economic factors . . . . . . . . . . . . . . . . . . . . 56
3.3.3.2 Non-economic factors . . . . . . . . . . . . . . . . . . 57
3.3.3.3 Historical analysis of monthly global irradiance . . . . 58
3.3.3.4 Monte Carlo analysis of yearly global irradiance . . . . 61
3.4 Photovoltaic Investments in a Portfolio Context . . . . . . . . . . . . . . 63
3.4.1 Setting the Portfolio Context . . . . . . . . . . . . . . . . . . . . 63
3.4.2 Including Photovoltaic Investments in a Portfolio . . . . . . . . . 64
3.4.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
3.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
Chapter 4. The Freight Market and Its Derivatives 71
Rüdiger Kiesel and Patrick Scherer
4.1 Introduction: the Freight Market . . . . . . . . . . . . . . . . . . . . . . 72
4.1.1 Vessels . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
4.1.2 Cargo . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
4.1.3 Routes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
4.2 Freight Rates: What Drives the Market? . . . . . . . . . . . . . . . . . . 74
4.2.1 Demand for Shipping Capacity . . . . . . . . . . . . . . . . . . 75
4.2.2 Supply of Shipping Capacity . . . . . . . . . . . . . . . . . . . 76
4.2.3 Costs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
4.3 Freight Derivatives: Hedging or Speculating? . . . . . . . . . . . . . . . 77
4.3.1 Forward Freight Agreement . . . . . . . . . . . . . . . . . . . . 77
4.3.2 Freight Futures . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
4.4 Explanatory Variables . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
4.4.1 Explanatory Power . . . . . . . . . . . . . . . . . . . . . . . . . 80
4.4.2 Granger Causality . . . . . . . . . . . . . . . . . . . . . . . . . 82
4.4.3 Selection Algorithm “Top Five” . . . . . . . . . . . . . . . . . . 83
4.4.4 Cointegration . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
4.5 Predicting Freight Spot and Futures Rates . . . . . . . . . . . . . . . . . 86
4.6 The Backtesting Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . 88
4.7 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90
Chapter 5. On Forward Price Modeling in Power Markets 93
Fred Espen Benth
5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94
5.2 HJM Approach to Power Forward Pricing . . . . . . . . . . . . . . . . . 95
5.3 Power Forwards and Approximation by Geometric
Brownian Motion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98
May 13, 2010 10:6 WSPC/SPI-B913 b913-fm FA
x Contents
5.3.1 A Geometric Brownian Motion Dynamics
by Volatility Averaging . . . . . . . . . . . . . . . . . . . . . . . 101
5.3.2 A Geometric Brownian Motion Dynamics
by Moment Matching . . . . . . . . . . . . . . . . . . . . . . . 103
5.3.3 The Covariance Structure Between Power Forwards . . . . . . . 106
5.3.4 The Distribution of a Power Forward . . . . . . . . . . . . . . . 108
5.3.5 Numerical Analysis of the Power Forward Distribution . . . . . . 110
5.4 Pricing of Options on Power Forwards . . . . . . . . . . . . . . . . . . . 114
5.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119
Chapter 6. Pricing Certificates Under Issuer Risk 123
Barbara Götz, Rudi Zagst and Marcos Escobar
6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124
6.2 The Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125
6.3 Pricing of Certificates Under Issuer Risk . . . . . . . . . . . . . . . . . . 126
6.3.1 Building Blocks . . . . . . . . . . . . . . . . . . . . . . . . . . 126
6.3.2 Index Certificates . . . . . . . . . . . . . . . . . . . . . . . . . 130
6.3.3 Participation Guarantee Certificates . . . . . . . . . . . . . . . . 132
6.3.4 Bonus Guarantee Certificates . . . . . . . . . . . . . . . . . . . 134
6.3.5 Discount Certificates . . . . . . . . . . . . . . . . . . . . . . . . 135
6.3.6 Bonus Certificates . . . . . . . . . . . . . . . . . . . . . . . . . 136
6.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139
Chapter 7. Asset Allocation with Credit Instruments 147
Barbara Menzinger, Anna Schlösser and Rudi Zagst
7.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148
7.2 Simulation Framework . . . . . . . . . . . . . . . . . . . . . . . . . . . 150
7.3 Framework for Total Return Calculation . . . . . . . . . . . . . . . . . . 153
7.4 Optimization Framework . . . . . . . . . . . . . . . . . . . . . . . . . . 156
7.4.1 Mean-Variance Optimization . . . . . . . . . . . . . . . . . . . 156
7.4.2 CVaR Optimization . . . . . . . . . . . . . . . . . . . . . . . . 157
7.5 Model Calibration and Simulation Results . . . . . . . . . . . . . . . . . 157
7.5.1 Mean-Variance Approach . . . . . . . . . . . . . . . . . . . . . 162
7.5.2 Conditional Value at Risk . . . . . . . . . . . . . . . . . . . . . 164
7.5.3 Comparison of Selected Optimal Portfolios . . . . . . . . . . . . 167
7.6 Summary and Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . 170
Chapter 8. Cross Asset Portfolio Derivatives 175
Stephan Höcht, Matthias Scherer and Philip Seegerer
May 13, 2010 10:6 WSPC/SPI-B913 b913-fm FA
Contents xi
8.1 Introduction to Cross Asset Portfolio Derivatives . . . . . . . . . . . . . 175
8.1.1 Definitions and Examples . . . . . . . . . . . . . . . . . . . . . 176
8.2 Collateralized Obligations . . . . . . . . . . . . . . . . . . . . . . . . . 179
8.3 A Comparison of CFO with CTSO . . . . . . . . . . . . . . . . . . . . . 179
8.3.1 Structural Features of CFO . . . . . . . . . . . . . . . . . . . . 179
8.3.2 Structural Features of CTSO . . . . . . . . . . . . . . . . . . . . 181
8.3.3 The Different Risks . . . . . . . . . . . . . . . . . . . . . . . . 181
8.3.4 Correlation of Tail Events in CTSO . . . . . . . . . . . . . . . . 181
8.4 Pricing Cross Asset Portfolio Derivatives . . . . . . . . . . . . . . . . . 182
8.4.1 Pricing Trigger Swaps . . . . . . . . . . . . . . . . . . . . . . . 182
8.4.2 Pricing nth-to-Trigger Baskets . . . . . . . . . . . . . . . . . . . 183
8.4.3 Pricing CTSO . . . . . . . . . . . . . . . . . . . . . . . . . . . 184
8.4.4 Modeling Approaches . . . . . . . . . . . . . . . . . . . . . . . 185
8.4.4.1 The structural approach . . . . . . . . . . . . . . . . . 185
8.4.4.2 The copula approach . . . . . . . . . . . . . . . . . . . 186
8.4.5 An Example for an nth-to Trigger Basket . . . . . . . . . . . . . 188
8.4.5.1 A pricing exercise of Example 3
(structural approach) . . . . . . . . . . . . . . . . . . 188
8.4.5.2 A pricing exercise of Example 3
(copula approach) . . . . . . . . . . . . . . . . . . . . 189
8.4.5.3 Resulting model spreads . . . . . . . . . . . . . . . . . 190
8.5 Outlook . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 194
8.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 195
Part II. Alternative Strategies
Chapter 9. Dynamic Portfolio Insurance Without Options 201
Dominik Dersch
9.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 202
9.2 Simple Strategies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 203
9.2.1 Buy-and-Hold . . . . . . . . . . . . . . . . . . . . . . . . . . . 203
9.2.2 Stop-Loss . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 203
9.2.3 The Bond Floor Strategy . . . . . . . . . . . . . . . . . . . . . . 204
9.2.4 Plain Vanilla CPPI . . . . . . . . . . . . . . . . . . . . . . . . . 205
9.3 Historical Simulation I . . . . . . . . . . . . . . . . . . . . . . . . . . . 206
9.4 Advanced Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 209
9.4.1 Transaction Costs . . . . . . . . . . . . . . . . . . . . . . . . . 210
9.4.2 Transaction Filter . . . . . . . . . . . . . . . . . . . . . . . . . 210
9.4.3 Lock-in Levels . . . . . . . . . . . . . . . . . . . . . . . . . . . 211
May 13, 2010 10:6 WSPC/SPI-B913 b913-fm FA
xii Contents
9.4.4 Leverage and Constrain of Exposure . . . . . . . . . . . . . . . 212
9.4.5 Rebalancing Strategies for the Risky Portfolio . . . . . . . . . . 213
9.4.6 CPPI and Beyond . . . . . . . . . . . . . . . . . . . . . . . . . 213
9.5 Historical Simulation II . . . . . . . . . . . . . . . . . . . . . . . . . . 214
9.5.1 Transaction Costs and Transaction Filter . . . . . . . . . . . . . 214
9.5.2 Lock-in Levels . . . . . . . . . . . . . . . . . . . . . . . . . . . 216
9.5.3 The Use of Leverage . . . . . . . . . . . . . . . . . . . . . . . . 220
9.5.4 CPPI on a Multi-Asset Risky Portfolio . . . . . . . . . . . . . . 222
9.6 Implement a Dynamic Protection Strategy with ETF . . . . . . . . . . . 223
9.7 Closing Remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 224
Chapter 10. How Good are Portfolio Insurance Strategies? 227
Sven Balder and Antje Mahayni
10.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 228
10.2 Optimal Portfolio Selection with Finite Horizons . . . . . . . . . . . . . 230
10.2.1 Problem (A) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 233
10.2.2 Problem (B) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 234
10.2.3 Problem (C) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 235
10.2.4 Comparison of Optimal Solutions . . . . . . . . . . . . . . . . . 238
10.3 Utility Loss Caused by Guarantees . . . . . . . . . . . . . . . . . . . . . 242
10.3.1 Justification of Guarantees and Empirical Observations . . . . . 242
10.3.2 Utility Loss . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 242
10.4 Utility Loss Caused by Trading Restrictions
and Transaction Costs . . . . . . . . . . . . . . . . . . . . . . . . . . . 246
10.4.1 Discrete-Time CPPI . . . . . . . . . . . . . . . . . . . . . . . . 246
10.4.2 Discrete-Time Option-Based Strategy . . . . . . . . . . . . . . . 249
10.4.3 Comments on Utility Loss and Shortfall Probability . . . . . . . 250
10.5 Utility Loss Caused by Guarantees
and Borrowing Constraints . . . . . . . . . . . . . . . . . . . . . . . . . 252
10.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 254
Chapter 11. Portfolio Insurances, CPPI and CPDO, Truth or Illusion? 259
Elisabeth Joossens and Wim Schoutens
11.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 260
11.2 Credit Risk and Credit Default Swaps . . . . . . . . . . . . . . . . . . . 261
11.2.1 Credit Risk . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 261
11.2.2 Credit Default Swaps (CDS) . . . . . . . . . . . . . . . . . . . . 265
11.3 Portfolio Insurances . . . . . . . . . . . . . . . . . . . . . . . . . . . . 267
May 13, 2010 10:6 WSPC/SPI-B913 b913-fm FA
Contents xiii
11.4 Modeling of CPPI Dynamics Using Multivariate
Jump-Driven Processes . . . . . . . . . . . . . . . . . . . . . . . . . . . 270
11.4.1 Multivariate Variance Gamma Modeling . . . . . . . . . . . . . 270
11.4.2 Swaptions on Credit Indices . . . . . . . . . . . . . . . . . . . . 273
11.4.2.1 Black’s model . . . . . . . . . . . . . . . . . . . . . . 273
11.4.2.2 The variance gamma model . . . . . . . . . . . . . . . 274
11.4.3 Spread Modeling by Correlated VG Processes . . . . . . . . . . 275
11.4.3.1 The pricing of CPPIs . . . . . . . . . . . . . . . . . . . 275
11.4.3.2 Gap risk . . . . . . . . . . . . . . . . . . . . . . . . . 279
11.5 Recent Developments for CPPI . . . . . . . . . . . . . . . . . . . . . . 281
11.5.1 Portfolio Insurance: The Extreme Value Approach
to the CPPI Method . . . . . . . . . . . . . . . . . . . . . . . . 282
11.5.2 VaR Approach for Credit CPPI . . . . . . . . . . . . . . . . . . 283
11.5.3 CPPI with Cushion Insurance . . . . . . . . . . . . . . . . . . . 284
11.6 A New Financial Instrument: Constant Proportion Debt Obligations . . . 285
11.6.1 The Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . 285
11.6.2 CPDOs in the Spotlight . . . . . . . . . . . . . . . . . . . . . . 289
11.6.3 Rating CPDOs Under VG Dynamics . . . . . . . . . . . . . . . 289
11.7 Comparison Between CPPI and CPDO . . . . . . . . . . . . . . . . . . 291
11.8 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 292
Chapter 12. On the Benefits of Robust Asset Allocation for CPPI Strategies 295
Katrin Schöttle and Ralf Werner
12.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 296
12.2 The Financial Market . . . . . . . . . . . . . . . . . . . . . . . . . . . . 296
12.2.1 The Basic Financial Market . . . . . . . . . . . . . . . . . . . . 297
12.2.2 The Riskless Asset . . . . . . . . . . . . . . . . . . . . . . . . . 298
12.2.3 The Risky Asset . . . . . . . . . . . . . . . . . . . . . . . . . . 298
12.2.4 Classical Mean–Variance Analysis . . . . . . . . . . . . . . . . 300
12.2.5 The Trading Strategy . . . . . . . . . . . . . . . . . . . . . . . . 302
12.3 The Standard CPPI Strategy . . . . . . . . . . . . . . . . . . . . . . . . 302
12.3.1 The Simple Case . . . . . . . . . . . . . . . . . . . . . . . . . . 303
12.3.2 The General Case . . . . . . . . . . . . . . . . . . . . . . . . . 305
12.3.3 Shortfall Probability of CPPI Strategies . . . . . . . . . . . . . . 308
12.3.4 Improving CPPI Strategies . . . . . . . . . . . . . . . . . . . . . 310
12.3.5 CPPI Strategies Under Estimation Risk . . . . . . . . . . . . . . 313
12.4 Robust Mean–Variance Optimization and Improved CPPI Strategies . . . 316
12.4.1 Robust Mean–Variance Analysis . . . . . . . . . . . . . . . . . . 317
12.4.2 Uncertainty Sets Via Expert Opinions or Related Estimators . . . 317
May 13, 2010 10:6 WSPC/SPI-B913 b913-fm FA
xiv Contents
12.4.3 Uncertainty Sets Via Confidence Sets . . . . . . . . . . . . . . . 319
12.4.4 Usage and Implications for CPPI Strategies . . . . . . . . . . . . 321
12.4.5 CPPIs with Robust Asset Allocations . . . . . . . . . . . . . . . 323
12.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 324
Chapter 13. Robust Asset Allocation Under Model Risk 327
Pauline Barrieu and Sandrine Tobelem
13.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 328
13.2 A Robust Approach to Model Risk . . . . . . . . . . . . . . . . . . . . . 329
13.2.1 The Absolute Ambiguity Robust Adjustment . . . . . . . . . . . 330
13.2.2 Relative Ambiguity Robust Adjustment . . . . . . . . . . . . . . 333
13.2.3 ARA Parametrization . . . . . . . . . . . . . . . . . . . . . . . 334
13.3 Some Definitions Relative to the Ambiguity-Adjusted
Asset Allocation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 335
13.4 Empirical Tests . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 336
13.4.1 Portfolios Tested . . . . . . . . . . . . . . . . . . . . . . . . . . 337
13.4.2 Performance Measures . . . . . . . . . . . . . . . . . . . . . . . 339
13.4.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 340
13.4.3.1 Performances of the different models . . . . . . . . . . 341
13.4.3.2 SEU portfolio . . . . . . . . . . . . . . . . . . . . . . 342
13.4.3.3 Ambiguity robust portfolios . . . . . . . . . . . . . . . 342
13.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 343
Chapter 14. Semi-Static Hedging Strategies for Exotic Options 345
Hansjörg Albrecher and Philipp Mayer
14.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 346
14.2 Hedging Path-Independent Options . . . . . . . . . . . . . . . . . . . . 347
14.2.1 Plain Vanilla Options with Arbitrary Strikes are Liquid . . . . . . 348
14.2.2 Finitely Many Liquid Strikes . . . . . . . . . . . . . . . . . . . 349
14.3 Hedging Barrier and Other Weakly Path Dependent Options . . . . . . . 350
14.3.1 Model-Dependent Strategies: Perfect Replication . . . . . . . . . 351
14.3.2 Model-Dependent Strategies: Approximations . . . . . . . . . . 357
14.3.3 Model-Independent Strategies: Robust Strategies . . . . . . . . . 359
14.4 Hedging Strongly Path-Dependent Options . . . . . . . . . . . . . . . . 361
14.4.1 Lookback Options . . . . . . . . . . . . . . . . . . . . . . . . . 362
14.4.2 Asian Options . . . . . . . . . . . . . . . . . . . . . . . . . . . 364
14.5 Case Study: Model-Dependent Hedging of Discretely
Sampled Options . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 367
14.6 Conclusion and Future Research . . . . . . . . . . . . . . . . . . . . . . 370