Siêu thị PDFTải ngay đi em, trời tối mất

Thư viện tri thức trực tuyến

Kho tài liệu với 50,000+ tài liệu học thuật

© 2023 Siêu thị PDF - Kho tài liệu học thuật hàng đầu Việt Nam

Tài liệu Advanced Modern Algebra by Joseph J. Rotman Hardcover: 1040 pages Publisher: Prentice
PREMIUM
Số trang
1056
Kích thước
5.6 MB
Định dạng
PDF
Lượt xem
930

Tài liệu Advanced Modern Algebra by Joseph J. Rotman Hardcover: 1040 pages Publisher: Prentice

Nội dung xem thử

Mô tả chi tiết

Advanced Modern Algebra

by Joseph J. Rotman

Hardcover: 1040 pages

Publisher: Prentice Hall; 1st edition (2002); 2nd printing (2003)

Language: English

ISBN: 0130878685

Book Description

This book's organizing principle is the interplay between groups and rings,

where “rings” includes the ideas of modules. It contains basic definitions,

complete and clear theorems (the first with brief sketches of proofs), and

gives attention to the topics of algebraic geometry, computers, homology,

and representations. More than merely a succession of definition-theorem-proofs,

this text put results and ideas in context so that students can appreciate why

a certain topic is being studied, and where definitions originate. Chapter

topics include groups; commutative rings; modules; principal ideal domains;

algebras; cohomology and representations; and homological algebra. For

individuals interested in a self-study guide to learning advanced algebra and

its related topics.

Book Info

Contains basic definitions, complete and clear theorems, and gives attention

to the topics of algebraic geometry, computers, homology, and representations.

For individuals interested in a self-study guide to learning advanced algebra

and its related topics.

To my wife

Marganit

and our two wonderful kids,

Danny and Ella,

whom I love very much

Contents

Second Printing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . viii

Preface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ix

Etymology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xii

Special Notation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xiii

Chapter 1 Things Past ............................ 1

1.1. Some Number Theory ............................. 1

1.2. Roots of Unity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

1.3. Some Set Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

Chapter 2 Groups I . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

2.1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

2.2. Permutations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

2.3. Groups . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

2.4. Lagrange’s Theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

2.5. Homomorphisms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

2.6. Quotient Groups . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

2.7. Group Actions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

Chapter 3 Commutative Rings I . . . . . . . . . . . . . . . . . . . . . 116

3.1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116

3.2. First Properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116

3.3. Polynomials . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126

3.4. Greatest Common Divisors . . . . . . . . . . . . . . . . . . . . . . . . . . 131

3.5. Homomorphisms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143

3.6. Euclidean Rings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151

3.7. Linear Algebra . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 158

Vector Spaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159

Linear Transformations . . . . . . . . . . . . . . . . . . . . . . . . . . . 171

3.8. Quotient Rings and Finite Fields . . . . . . . . . . . . . . . . . . . . . . . 182

v

vi Contents

Chapter 4 Fields . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 198

4.1. Insolvability of the Quintic . . . . . . . . . . . . . . . . . . . . . . . . . . 198

Formulas and Solvability by Radicals . . . . . . . . . . . . . . . . . . . 206

Translation into Group Theory . . . . . . . . . . . . . . . . . . . . . . . 210

4.2. Fundamental Theorem of Galois Theory . . . . . . . . . . . . . . . . . . . 218

Chapter 5 Groups II . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 249

5.1. Finite Abelian Groups . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 249

Direct Sums . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 249

Basis Theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 255

Fundamental Theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . 262

5.2. The Sylow Theorems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 269

5.3. The Jordan–Holder Theorem . ¨ . . . . . . . . . . . . . . . . . . . . . . . . 278

5.4. Projective Unimodular Groups . . . . . . . . . . . . . . . . . . . . . . . . 289

5.5. Presentations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 297

5.6. The Nielsen–Schreier Theorem . . . . . . . . . . . . . . . . . . . . . . . . 311

Chapter 6 Commutative Rings II . . . . . . . . . . . . . . . . . . . . . 319

6.1. Prime Ideals and Maximal Ideals . . . . . . . . . . . . . . . . . . . . . . . 319

6.2. Unique Factorization Domains . . . . . . . . . . . . . . . . . . . . . . . . 326

6.3. Noetherian Rings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 340

6.4. Applications of Zorn’s Lemma . . . . . . . . . . . . . . . . . . . . . . . . 345

6.5. Varieties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 376

6.6. Grobner Bases ¨ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 399

Generalized Division Algorithm . . . . . . . . . . . . . . . . . . . . . . 400

Buchberger’s Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . 411

Chapter 7 Modules and Categories . . . . . . . . . . . . . . . . . . . 423

7.1. Modules . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 423

7.2. Categories . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 442

7.3. Functors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 461

7.4. Free Modules, Projectives, and Injectives . . . . . . . . . . . . . . . . . . . 471

7.5. Grothendieck Groups . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 488

7.6. Limits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 498

Chapter 8 Algebras . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 520

8.1. Noncommutative Rings . . . . . . . . . . . . . . . . . . . . . . . . . . . . 520

8.2. Chain Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 533

8.3. Semisimple Rings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 550

8.4. Tensor Products . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 574

8.5. Characters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 605

8.6. Theorems of Burnside and of Frobenius . . . . . . . . . . . . . . . . . . . 634

Contents vii

Chapter 9 Advanced Linear Algebra . . . . . . . . . . . . . . . . . . 646

9.1. Modules over PIDs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 646

9.2. Rational Canonical Forms . . . . . . . . . . . . . . . . . . . . . . . . . . . 666

9.3. Jordan Canonical Forms . . . . . . . . . . . . . . . . . . . . . . . . . . . . 675

9.4. Smith Normal Forms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 682

9.5. Bilinear Forms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 694

9.6. Graded Algebras . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 714

9.7. Division Algebras . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 727

9.8. Exterior Algebra . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 741

9.9. Determinants . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 756

9.10. Lie Algebras . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 772

Chapter 10 Homology . . . . . . . . . . . . . . . . . . . . . . . . . . . . 781

10.1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 781

10.2. Semidirect Products . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 784

10.3. General Extensions and Cohomology . . . . . . . . . . . . . . . . . . . . 794

10.4. Homology Functors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 813

10.5. Derived Functors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 830

10.6. Ext and Tor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 852

10.7. Cohomology of Groups . . . . . . . . . . . . . . . . . . . . . . . . . . . 870

10.8. Crossed Products . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 887

10.9. Introduction to Spectral Sequences . . . . . . . . . . . . . . . . . . . . . 893

Chapter 11 Commutative Rings III . . . . . . . . . . . . . . . . . . . 898

11.1. Local and Global . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 898

11.2. Dedekind Rings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 922

Integrality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 923

Nullstellensatz Redux . . . . . . . . . . . . . . . . . . . . . . . . . . . . 931

Algebraic Integers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 938

Characterizations of Dedekind Rings . . . . . . . . . . . . . . . . . . . . 948

Finitely Generated Modules over Dedekind Rings . . . . . . . . . . . . . 959

11.3. Global Dimension . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 969

11.4. Regular Local Rings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 985

Appendix The Axiom of Choice and Zorn’s Lemma . . . . . . . . A-1

Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . B-1

Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . I-1

Second Printing

It is my good fortune that several readers of the first printing this book apprised me of

errata I had not noticed, often giving suggestions for improvement. I give special thanks to

Nick Loehr, Robin Chapman, and David Leep for their generous such help.

Prentice Hall has allowed me to correct every error found; this second printing is surely

better than the first one.

Joseph Rotman

May 2003

viii

Preface

Algebra is used by virtually all mathematicians, be they analysts, combinatorists, com￾puter scientists, geometers, logicians, number theorists, or topologists. Nowadays, ev￾eryone agrees that some knowledge of linear algebra, groups, and commutative rings is

necessary, and these topics are introduced in undergraduate courses. We continue their

study.

This book can be used as a text for the first year of graduate algebra, but it is much more

than that. It can also serve more advanced graduate students wishing to learn topics on

their own; while not reaching the frontiers, the book does provide a sense of the successes

and methods arising in an area. Finally, this is a reference containing many of the standard

theorems and definitions that users of algebra need to know. Thus, the book is not only an

appetizer, but a hearty meal as well.

When I was a student, Birkhoff and Mac Lane’s A Survey of Modern Algebra was the

text for my first algebra course, and van der Waerden’s Modern Algebra was the text for

my second course. Both are excellent books (I have called this book Advanced Modern

Algebra in homage to them), but times have changed since their first appearance: Birkhoff

and Mac Lane’s book first appeared in 1941, and van der Waerden’s book first appeared

in 1930. There are today major directions that either did not exist over 60 years ago, or

that were not then recognized to be so important. These new directions involve algebraic

geometry, computers, homology, and representations (A Survey of Modern Algebra has

been rewritten as Mac Lane–Birkhoff, Algebra, Macmillan, New York, 1967, and this

version introduces categorical methods; category theory emerged from algebraic topology,

but was then used by Grothendieck to revolutionize algebraic geometry).

Let me now address readers and instructors who use the book as a text for a beginning

graduate course. If I could assume that everyone had already read my book, A First Course

in Abstract Algebra, then the prerequisites for this book would be plain. But this is not a

realistic assumption; different undergraduate courses introducing abstract algebra abound,

as do texts for these courses. For many, linear algebra concentrates on matrices and vector

spaces over the real numbers, with an emphasis on computing solutions of linear systems

of equations; other courses may treat vector spaces over arbitrary fields, as well as Jordan

and rational canonical forms. Some courses discuss the Sylow theorems; some do not;

some courses classify finite fields; some do not.

To accommodate readers having different backgrounds, the first three chapters contain

ix

x Preface

many familiar results, with many proofs merely sketched. The first chapter contains the

fundamental theorem of arithmetic, congruences, De Moivre’s theorem, roots of unity,

cyclotomic polynomials, and some standard notions of set theory, such as equivalence

relations and verification of the group axioms for symmetric groups. The next two chap￾ters contain both familiar and unfamiliar material. “New” results, that is, results rarely

taught in a first course, have complete proofs, while proofs of “old” results are usually

sketched. In more detail, Chapter 2 is an introduction to group theory, reviewing permuta￾tions, Lagrange’s theorem, quotient groups, the isomorphism theorems, and groups acting

on sets. Chapter 3 is an introduction to commutative rings, reviewing domains, fraction

fields, polynomial rings in one variable, quotient rings, isomorphism theorems, irreducible

polynomials, finite fields, and some linear algebra over arbitrary fields. Readers may use

“older” portions of these chapters to refresh their memory of this material (and also to

see my notational choices); on the other hand, these chapters can also serve as a guide for

learning what may have been omitted from an earlier course (complete proofs can be found

in A First Course in Abstract Algebra). This format gives more freedom to an instructor,

for there is a variety of choices for the starting point of a course of lectures, depending

on what best fits the backgrounds of the students in a class. I expect that most instruc￾tors would begin a course somewhere in the middle of Chapter 2 and, afterwards, would

continue from some point in the middle of Chapter 3. Finally, this format is convenient

for the author, because it allows me to refer back to these earlier results in the midst of a

discussion or a proof. Proofs in subsequent chapters are complete and are not sketched.

I have tried to write clear and complete proofs, omitting only those parts that are truly

routine; thus, it is not necessary for an instructor to expound every detail in lectures, for

students should be able to read the text.

Here is a more detailed account of the later chapters of this book.

Chapter 4 discusses fields, beginning with an introduction to Galois theory, the inter￾relationship between rings and groups. We prove the insolvability of the general polyno￾mial of degree 5, the fundamental theorem of Galois theory, and applications, such as a

proof of the fundamental theorem of algebra, and Galois’s theorem that a polynomial over

a field of characteristic 0 is solvable by radicals if and only if its Galois group is a solvable

group.

Chapter 5 covers finite abelian groups (basis theorem and fundamental theorem), the

Sylow theorems, Jordan–Holder theorem, solvable groups, simplicity of the linear groups ¨

PSL(2, k), free groups, presentations, and the Nielsen–Schreier theorem (subgroups of free

groups are free).

Chapter 6 introduces prime and maximal ideals in commutative rings; Gauss’s theorem

that R[x] is a UFD when R is a UFD; Hilbert’s basis theorem, applications of Zorn’s lemma

to commutative algebra (a proof of the equivalence of Zorn’s lemma and the axiom of

choice is in the appendix), inseparability, transcendence bases, Luroth’s theorem, affine va- ¨

rieties, including a proof of the Nullstellensatz for uncountable algebraically closed fields

(the full Nullstellensatz, for varieties over arbitrary algebraically closed fields, is proved

in Chapter 11); primary decomposition; Grobner bases. Chapters 5 and 6 overlap two ¨

chapters of A First Course in Abstract Algebra, but these chapters are not covered in most

Preface xi

undergraduate courses.

Chapter 7 introduces modules over commutative rings (essentially proving that all

R-modules and R-maps form an abelian category); categories and functors, including

products and coproducts, pullbacks and pushouts, Grothendieck groups, inverse and direct

limits, natural transformations; adjoint functors; free modules, projectives, and injectives.

Chapter 8 introduces noncommutative rings, proving Wedderburn’s theorem that finite

division rings are commutative, as well as the Wedderburn–Artin theorem classifying semi￾simple rings. Modules over noncommutative rings are discussed, along with tensor prod￾ucts, flat modules, and bilinear forms. We also introduce character theory, using it to prove

Burnside’s theorem that finite groups of order pmqn are solvable. We then introduce multi￾ply transitive groups and Frobenius groups, and we prove that Frobenius kernels are normal

subgroups of Frobenius groups.

Chapter 9 considers finitely generated modules over PIDs (generalizing earlier theorems

about finite abelian groups), and then goes on to apply these results to rational, Jordan, and

Smith canonical forms for matrices over a field (the Smith normal form enables one to

compute elementary divisors of a matrix). We also classify projective, injective, and flat

modules over PIDs. A discussion of graded k-algebras, for k a commutative ring, leads to

tensor algebras, central simple algebras and the Brauer group, exterior algebra (including

Grassmann algebras and the binomial theorem), determinants, differential forms, and an

introduction to Lie algebras.

Chapter 10 introduces homological methods, beginning with semidirect products and

the extension problem for groups. We then present Schreier’s solution of the extension

problem using factor sets, culminating in the Schur–Zassenhaus lemma. This is followed

by axioms characterizing Tor and Ext (existence of these functors is proved with derived

functors), some cohomology of groups, a bit of crossed product algebras, and an introduc￾tion to spectral sequences.

Chapter 11 returns to commutative rings, discussing localization, integral extensions,

the general Nullstellensatz (using Jacobson rings), Dedekind rings, homological dimen￾sions, the theorem of Serre characterizing regular local rings as those noetherian local

rings of finite global dimension, the theorem of Auslander and Buchsbaum that regular

local rings are UFDs.

Each generation should survey algebra to make it serve the present time.

It is a pleasure to thank the following mathematicians whose suggestions have greatly

improved my original manuscript: Ross Abraham, Michael Barr, Daniel Bump, Heng Huat

Chan, Ulrich Daepp, Boris A. Datskovsky, Keith Dennis, Vlastimil Dlab, Sankar Dutta,

David Eisenbud, E. Graham Evans, Jr., Daniel Flath, Jeremy J. Gray, Daniel Grayson,

Phillip Griffith, William Haboush, Robin Hartshorne, Craig Huneke, Gerald J. Janusz,

David Joyner, Carl Jockusch, David Leep, Marcin Mazur, Leon McCulloh, Emma Previato,

Eric Sommers, Stephen V. Ullom, Paul Vojta, William C. Waterhouse, and Richard Weiss.

Joseph Rotman

Etymology

The heading etymology in the index points the reader to derivations of certain mathematical

terms. For the origins of other mathematical terms, we refer the reader to my books Journey

into Mathematics and A First Course in Abstract Algebra, which contain etymologies of

the following terms.

Journey into Mathematics:

π, algebra, algorithm, arithmetic, completing the square, cosine, geometry, irrational

number, isoperimetric, mathematics, perimeter, polar decomposition, root, scalar, secant,

sine, tangent, trigonometry.

A First Course in Abstract Algebra:

affine, binomial, coefficient, coordinates, corollary, degree, factor, factorial, group,

induction, Latin square, lemma, matrix, modulo, orthogonal, polynomial, quasicyclic,

September, stochastic, theorem, translation.

xii

Special Notation

A algebraic numbers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 353

An alternating group on n letters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

Ab category of abelian groups . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 443

Aff(1, k) one-dimensional affine group over a field k . . . . . . . . . . . . . . . . . . . . . 125

Aut(G) automorphism group of a group G . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

Br(k),Br(E/k) Brauer group, relative Brauer group ....................... 737, 739

C complex numbers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

C•, (C•, d•) complex with differentiations dn : Cn → Cn−1 . . . . . . . . . . . . . . . . . . 815

CG(x) centralizer of an element x in a group G . . . . . . . . . . . . . . . . . . . . . . . 101

D(R) global dimension of a commutative ring R . . . . . . . . . . . . . . . . . . . . . 974

D2n dihedral group of order 2n . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

deg( f ) degree of a polynomial f (x) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126

Deg( f ) multidegree of a polynomial f (x1,..., xn) . . . . . . . . . . . . . . . . . . . . . 402

det(A) determinant of a matrix A . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 757

dimk (V) dimension of a vector space V over a field k . . . . . . . . . . . . . . . . . . . . 167

dim(R) Krull dimension of a commutative ring R . . . . . . . . . . . . . . . . . . . . . . 988

Endk (M) endomorphism ring of a k-module M . . . . . . . . . . . . . . . . . . . . . . . . . . 527

Fq finite field having q elements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 193

Frac(R) fraction field of a domain R . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123

Gal(E/k) Galois group of a field extension E/k . . . . . . . . . . . . . . . . . . . . . . . . . 200

GL(V) automorphisms of a vector space V . . . . . . . . . . . . . . . . . . . . . . . . . . . . 172

GL(n, k) n × n nonsingular matrices, entries in a field k . . . . . . . . . . . . . . . . . . 179

H division ring of real quaternions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 522

Hn, Hn homology, cohomology . . ................................ 818, 845

ht(p) height of prime ideal p . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 987

Im integers modulo m . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

I or

In identity matrix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 173

I radical of an ideal I . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 383

Id(A) ideal of a subset A ⊆ kn . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 382

im f image of a function f . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

irr(α, k) minimal polynomial of α over a field k . . . . . . . . . . . . . . . . . . . . . . . . . 189

xiii

xiv Special Notation

k algebraic closure of a field k . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 354

K0(R), K0(C) Grothendieck groups, direct sums . ........................ 491, 489

K

(C) Grothendieck group, short exact sequences . . . . . . . . . . . . . . . . . . . . . 492

ker f kernel of a homomorphism f . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

l D(R) left global dimension of a ring R . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 974

Matn(k) ring of all n × n matrices with entries in k . . . . . . . . . . . . . . . . . . . . . . 520

RMod category of left R-modules . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 443

ModR category of right R-modules . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 526

N natural numbers = {integers n : n ≥ 0} ........................... 1

NG(H) normalizer of a subgroup H in a group G . . . . . . . . . . . . . . . . . . . . . . 101

OE ring of integers in an algebraic number field E . . . . . . . . . . . . . . . . . . 925

O(x) orbit of an element x . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

PSL(n, k) projective unimodular group = SL(n, k)/center . . . . . . . . . . . . . . . . . 292

Q rational numbers

Q quaternion group of order 8 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

Qn generalized quaternion group of order 2n . . . . . . . . . . . . . . . . . . . . . . . 298

R real numbers

Sn symmetric group on n letters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

SX symmetric group on a set X . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

sgn(α) signum of a permutation α . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

SL(n, k) n × n matrices of determinant 1, entries in a field k . . . . . . . . . . . . . . . 72

Spec(R) the set of all prime ideals in a commutative ring R . . . . . . . . . . . . . . 398

U(R) group of units in a ring R . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122

UT(n, k) unitriangular n × n matrices over a field k . . . . . . . . . . . . . . . . . . . . . . 274

T I3 I4, a nonabelian group of order 12 . . . . . . . . . . . . . . . . . . . . . . . . 792

tG torsion subgroup of an abelian group G . . . . . . . . . . . . . . . . . . . . . . . . 267

tr(A) trace of a matrix A . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 610

V four-group . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

Var(I) variety of an ideal I ⊆ k[x1,..., xn] . . . . . . . . . . . . . . . . . . . . . . . . . . . 379

Z integers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

Zp p-adic integers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 503

Z(G) center of a group G . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

Z(R) center of a ring R . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 523

[G : H] index of a subgroup H ≤ G . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

[E : k] degree of a field extension E/k . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 187

S T coproduct of objects in a category . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 447

S  T product of objects in a category . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 449

S ⊕ T external, internal direct sum . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 250

K × Q direct product . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

K



Q semidirect product . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 790

Ai direct sum . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 451

Ai direct product . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 451

Special Notation xv

lim

←− Ai inverse limit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 500

lim

−→ Ai direct limit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 505

G commutator subgroup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 284

Gx stabilizer of an element x . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

G[m] {g ∈ G : mg = 0}, where G is an additive abelian group . . . . . . . . . 267

mG {mg : g ∈ G}, where G is an additive abelian group . . . . . . . . . . . . . 253

G p p-primary component of an abelian group G . . . . . . . . . . . . . . . . . . . 256

k[x] polynomials . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127

k(x) rational functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129

k[[x]] formal power series . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130

kX polynomials in noncommuting variables . . . . . . . . . . . . . . . . . . . . . . . 724

Rop opposite ring . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 529

Ra or (a) principal ideal generated by a . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146

R× nonzero elements in a ring R . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125

H ≤ G H is a subgroup of a group G . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

H < G H is a proper subgroup of a group G . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

H ✁ G H is a normal subgroup of a group G . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

A ⊆ B A is a submodule (subring) of a module (ring)B . . . . . . . . . . . . . . . . 119

A B A is a proper submodule (subring) of a module (ring)B . . . . . . . . . . 119

1X identity function on a set X

1X identity morphism on an object X . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 443

f : a → b f (a) = b . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

|X| number of elements in a set X

Y [T ]X matrix of a linear transformation T relative to bases X and Y . . . . . 173

χσ character afforded by a representation σ . . . . . . . . . . . . . . . . . . . . . . . . 610

φ(n) Euler φ-function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

n

r

 binomial coefficient n!/r!(n − r)! ............................... 5

δi j Kronecker delta δi j =



1 if i = j;

0 if i = j.

a1,..., ai,..., an list a1,..., an with ai omitted

Tải ngay đi em, còn do dự, trời tối mất!