Thư viện tri thức trực tuyến
Kho tài liệu với 50,000+ tài liệu học thuật
© 2023 Siêu thị PDF - Kho tài liệu học thuật hàng đầu Việt Nam

Systems dynamics for mechanical engineers
Nội dung xem thử
Mô tả chi tiết
Matthew A. Davies · Tony L. Schmitz
System
Dynamics for
Mechanical
Engineers
System Dynamics for Mechanical
Engineers
Matthew A. Davies • Tony L. Schmitz
System Dynamics
for Mechanical
Engineers
Matthew A. Davies
University of North Carolina at Charlotte
Charlotte, NC, USA
Tony L. Schmitz
University of North Carolina at Charlotte
Charlotte, NC, USA
ISBN 978-1-4614-9292-4 ISBN 978-1-4614-9293-1 (eBook)
DOI 10.1007/978-1-4614-9293-1
Springer New York Heidelberg Dordrecht London
Library of Congress Control Number: 2014947522
# Springer Science+Business Media New York 2015
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part
of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations,
recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission or
information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar
methodology now known or hereafter developed. Exempted from this legal reservation are brief excerpts
in connection with reviews or scholarly analysis or material supplied specifically for the purpose of being
entered and executed on a computer system, for exclusive use by the purchaser of the work. Duplication
of this publication or parts thereof is permitted only under the provisions of the Copyright Law of the
Publisher’s location, in its current version, and permission for use must always be obtained from
Springer. Permissions for use may be obtained through RightsLink at the Copyright Clearance Center.
Violations are liable to prosecution under the respective Copyright Law.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this
publication does not imply, even in the absence of a specific statement, that such names are exempt
from the relevant protective laws and regulations and therefore free for general use.
While the advice and information in this book are believed to be true and accurate at the date of
publication, neither the authors nor the editors nor the publisher can accept any legal responsibility for
any errors or omissions that may be made. The publisher makes no warranty, express or implied, with
respect to the material contained herein.
Printed on acid-free paper
Springer is part of Springer Science+Business Media (www.springer.com)
To our Lord and Savior, Jesus Christ
Preface
In this textbook, we describe the fundamentals of system dynamics using Laplace
transform techniques and frequency domain approaches as the primary analytical
tools. It is aimed at the mechanical engineering student and, therefore, begins with a
thorough discussion of the modeling of mechanical systems to provide the backdrop
for the entire text. Once the fundamentals of mechanical system behavior are developed, the topic is broadened to include electrical, electromechanical, and thermal
systems. Wherever possible, analogies between the less familiar systems and their
mechanical counterparts are drawn upon to help clarify the subject matter. The topics
in the book are concluded with a discussion of block diagrams, feedback control
systems, and frequency response of dynamic systems including an introduction to
vibrations. Example computational techniques using MATLAB® are incorporated
throughout the text. The book is based upon undergraduate courses in system
dynamics and mechanical vibrations that the authors currently teach. It is designed
to be used in either a traditional 15-week semester or two quarters spanning 3–
4 months. It is appropriate for undergraduate engineering students who have
completed the basic courses in mathematics (through differential equations) and
physics and the introductory mechanical engineering courses including statics and
dynamics.
We organized the book into 11 chapters. The chapter topics are summarized here.
• Chapter 1—This chapter defines the concept of a dynamic system as it is
commonly used in engineering. It gives examples of such systems and, in a
broad sense, describes the importance of system dynamics in engineering. To
prepare the reader for Chap. 2, it also links the idea of a system model to the
mathematical concept of a differential equation.
• Chapter 2—This chapter describes the Laplace transform, the primary analysis
and solution technique used in this book, and supporting topics.
• Chapter 3—This chapter introduces the fundamental lumped parameter elements
used to model mechanical systems. These include translational, rotational, and
transmission elements.
• Chapter 4—This chapter introduces modeling of a mechanical system with
translation mechanical elements using the undamped and damped simple
harmonic oscillator. The models are solved for common inputs. The concepts
vii
of transfer function, characteristic equation, natural frequency, and damping
ratio are introduced.
• Chapter 5—This chapter extends the concepts in Chap. 4 to include models with
rotational degrees of freedom.
• Chapter 6—This chapter analyzes dynamic systems with transmission elements
and includes the associated geometric and power constraints.
• Chapter 7—This chapter examines electrical circuits composed of resistors,
capacitors, and inductors. The mathematical analogies between electrical and
mechanical elements are discussed.
• Chapter 8—This chapter discusses electromechanical systems including electric
motors and other electromagnetic actuators including voice coils. This discussion further emphasizes the mathematical analogies between mechanical and
electrical elements.
• Chapter 9—This chapter describes bulk heat transfer showing the analogies
between mechanical, electrical, and thermal elements. It also provides an introduction to proportional-integral-derivative feedback control in the context of a
temperature control system.
• Chapter 10—This chapter condenses the book concepts into the formal language
of block diagrams. Feedback and control systems are discussed in more detail.
• Chapter 11—This chapter describes the behavior of dynamic systems subjected
to sinusoidal and other periodic inputs. It is a precursor to a mechanical
vibrations course.
The text is written with the mechanical engineer in mind. This includes the
organization, selection of examples, and range of topics. It will provide the engineering student not only with sound fundamentals, but also with the confidence to
address new, multidisciplinary systems that are found in practice. It will equip the
engineer with techniques to analyze the dynamics of modern systems.
We conclude by acknowledging the many contributors to this text. These
naturally include our instructors, colleagues, collaborators, and students.
Charlotte, NC, USA Matthew A. Davies
Charlotte, NC, USA Tony L. Schmitz
viii Preface
Contents
1 Introduction .......................................... 1
1.1 What Is a System? ................................. 1
1.2 System Boundaries ................................. 2
1.3 Modeling and Analysis Tools . . . ...................... 5
1.4 Continuous Time Motions Versus Dynamic
“Snapshots” . ..................................... 7
1.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2 Laplace Transform Techniques . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.2 Definition of the Laplace Transform . . . . . . . . . . . . . . . . . . . . 14
2.3 Complex Numbers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.4 Phasors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
2.5 Laplace Transforms of Common Functions . . . . . . . . . . . . . . . 22
2.6 Properties of the Laplace Transform . . . . . . . . . . . . . . . . . . . . 29
2.6.1 Linearity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
2.6.2 Laplace Transform of a Time-Delayed Function . . . . . . 29
2.6.3 Laplace Transform of a Time Derivative . . . . . . . . . . . . 31
2.6.4 Initial and Final Value Theorems . . . . . . . . . . . . . . . . . 33
2.7 Inverting Laplace Transforms . . . . . . . . . . . . . . . . . . . . . . . . . 36
2.7.1 Distinct Real Poles . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
2.7.2 Complex Poles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
2.7.3 Repeated Real Poles . . . . . . . . . . . . . . . . . . . . . . . . . . 42
2.7.4 Special Case That Often Occurs with Step Inputs
to Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
2.8 Using MATLAB® to Find Laplace and Inverse
Laplace Transforms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
2.9 Solving Differential Equations Using Laplace Transforms . . . . 46
Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
3 Elements of Lumped Parameter Models . . . . . . . . . . . . . . . . . . . . . 53
3.1 Introduction . . .................................... 53
3.2 Inertial Elements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
ix
3.3 Linear Spring Elements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
3.4 Linear Damping Elements . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
3.5 Combinations of Springs and Dampers . . . . . . . . . . . . . . . . . . . 62
3.6 Transmission Elements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
3.6.1 Levers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
3.6.2 Gears . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
3.6.3 Rack and Pinion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
3.7 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
4 Transient Rectilinear Motion of Mechanical Systems . . . . . . . . . . . 77
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
4.2 Simple Harmonic Oscillator . . . . . . . . . . . . . . . . . . . . . . . . . . 78
4.2.1 Initial Velocity Only (x(0) = 0, x_(0) = v0, F(t) = 0) . . . . 79
4.2.2 Impulse Input (x(0) = 0, x_(0) = 0, F(t) = P0 δ(t)) . . . . . 80
4.2.3 Step Input (x(0) = 0, x_(0) = 0, F(t) = F0 u(t)) . . . . . . . . 81
4.3 Damped Harmonic Oscillator . . . . . . . . . . . . . . . . . . . . . . . . . 82
4.4 The Effect of Gravitational Loads . . . . . . . . . . . . . . . . . . . . . . 92
4.5 Transfer Functions and the Characteristic Equation . . . . . . . . . . 97
4.6 Multiple Degree of Freedom Systems . . . . . . . . . . . . . . . . . . . 108
4.7 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115
Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116
5 Transient Rotational Motion of Mechanical Systems . . . . . . . . . . . 123
5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123
5.2 The Simple Pendulum . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123
5.2.1 Simple Undamped Pendulum with Initial Velocity
Only (θ(0) ¼ 0, _
θ(0) ¼ ω0, M(t) ¼ 0) . . . . . . . . . . . . . . . 126
5.2.2 Simple Damped Pendulum with Initial Velocity
(θ(0) ¼ 0, _
θ(0) ¼ ω0, M(t) ¼ 0) . . . . . . . . . . . . . . . . . . . 132
5.2.3 Simple Damped Pendulum with Step Input
(θ(0) ¼ 0, _
θ (0) ¼ 0, M(t) ¼ MO u(t)) . . . . . . . . . . . . . . 137
5.3 Pendulum-Like Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140
5.4 Rotational Drive Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146
5.4.1 No Input Angle (θin ¼ 0) . . . . . . . . . . . . . . . . . . . . . . . 147
5.4.2 Nonzero Input Angle (θin 6¼ 0) . . . . . . . . . . . . . . . . . . . 150
5.5 Multiple Degree of Freedom Rotational Systems . . . . . . . . . . . 155
5.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 160
Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 161
6 Combined Rectilinear and Rotational Motions:
Transmission Elements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 165
6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 165
6.2 System Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 165
6.3 Systems with Transmission Elements . . . . . . . . . . . . . . . . . . . . 167
x Contents
6.4 Levers in Dynamic Systems . . . . . . . . . . . . . . . . . . . . . . . . . . 168
6.5 Gears in Dynamic Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . 176
6.6 Other Transmission Elements . . . . . . . . . . . . . . . . . . . . . . . . . 179
6.7 Higher Degree of Freedom Systems
and Transfer Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 193
6.8 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 199
Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 200
7 Electric Circuits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 205
7.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 205
7.2 Electrical Element Input/Output Relationships . . . . . . . . . . . . . 206
7.3 Impedances in Series and Parallel . . . . . . . . . . . . . . . . . . . . . . 210
7.4 Kirchhoff’s Laws for Circuit Analysis . . . . . . . . . . . . . . . . . . . 211
7.5 Differential Equation Methods . . . . . . . . . . . . . . . . . . . . . . . . . 212
7.6 Impedance Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 218
7.7 Operational Amplifiers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 232
7.7.1 Inverting Op-Amp . . . . . . . . . . . . . . . . . . . . . . . . . . . . 233
7.7.2 Noninverting Op-Amp Configuration . . . . . . . . . . . . . . 240
7.7.3 Other Configurations . . . . . . . . . . . . . . . . . . . . . . . . . . 244
7.8 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 246
Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 247
Reference . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 252
8 Electromechanical Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 253
8.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 253
8.2 Permanent Magnet Direct Current Motors . . . . . . . . . . . . . . . . 253
8.2.1 Motor Transfer Function . . . . . . . . . . . . . . . . . . . . . . . 256
8.2.2 Dynamic Motor Response . . . . . . . . . . . . . . . . . . . . . . 258
8.2.3 Motor Time Constants and Approximate
First-Order Behavior . . . . . . . . . . . . . . . . . . . . . . . . . . 262
8.2.4 Steady State Motor Behavior in Response
to External Load . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 269
8.3 Electric Generators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 274
8.4 Other Electromechanical Devices: Acoustic
Speaker/Voice Coil . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 279
8.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 285
Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 286
Reference . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 287
9 Thermal Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 289
9.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 289
9.2 Basic Lumped Parameter Thermal Elements . . . . . . . . . . . . . . 290
9.2.1 Thermal Mass . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 290
9.2.2 Thermal Resistance: Heat Exchange
with the Environment . . . . . . . . . . . . . . . . . . . . . . . . . . 291
9.3 Thermal Mass Subject to a Constant Heat Input . . . . . . . . . . . . 292
Contents xi
9.4 Thermal Mass Subjected to Heat Exchange
with the Environment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 296
9.5 Thermal Mass Subjected to Heat Exchange
with the Environment and Power Input . . . . . . . . . . . . . . . . . . 301
9.6 A Proportional Integral Derivative (PID) Thermal
Control System . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 305
9.7 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 312
Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 312
10 Block Diagrams and Introduction to Control Systems . . . . . . . . . . 315
10.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 315
10.2 Block Diagram Algebra . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 315
10.3 Feedback Loops with Proportional Gain . . . . . . . . . . . . . . . . . . 316
10.4 Feedback Loops with Proportional, Integral,
and Derivative Gains (PID Control) . . . . . . . . . . . . . . . . . . . . . 327
10.5 Block Diagram Representation of a Permanent
Magnet DC Motor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 335
10.6 Application of Block Diagrams to Servomotor Control . . . . . . . 337
10.7 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 341
Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 342
11 Frequency Domain Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 347
11.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 347
11.2 Response of Spring-Mass System to a Periodic Input . . . . . . . . 348
11.3 Frequency Response Functions . . . . . . . . . . . . . . . . . . . . . . . . 353
11.4 Properties of the Frequency Response Function . . . . . . . . . . . . 365
11.5 Multiple Degree-of-Freedom Systems . . . . . . . . . . . . . . . . . . . 369
11.6 Tuned-Mass Absorber Example . . . . . . . . . . . . . . . . . . . . . . . . 373
11.7 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 377
Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 377
Reference . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 380
Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 381
xii Contents
Introduction 1
1.1 What Is a System?
The word system has a broad modern definition. The Merriam-Webster dictionary
defines a system as “a regularly interacting or interdependent group of items
forming a unified whole.” For the engineer, a system consists of a combination of
elements which, acting together, perform a specific task. An input to a system
causes the system to exhibit a response which is observed as changes in the system
output. All of the systems we discuss in this book are causal: the input, or cause,
results in the output, or effect. Additionally, causality requires that the output
depends only on current and previous input values. Future inputs do not affect the
current output.
Systems are comprised of collections of elements that affect each other. Each
element in a system has its own input/output relationship. For example, when an
input force is applied to a linear spring, an output deflection that is proportional to
the force is obtained. Similarly, if an input voltage is applied across a resistor, an
output current flows through the resistor. System elements such as springs and
resistors defined in this way are static because the output depends on the input only
at the current time. A dynamic element produces an output that depends not only on
current inputs, but also on the previous inputs (i.e., the input history). For example,
consider a mass with a force input and a position output. The position of the mass
depends not only on the current force value, but also on previous force values. In
our analyses, this information is incorporated into the initial position and velocity of
the mass. The input/output relationship for an entire system is developed by
analyzing the interactions between all of the system elements. The output of a
static system depends only on the inputs at the current time. The output of a dynamic
system depends on the inputs and their history.
# Springer Science+Business Media New York 2015
M.A. Davies, T.L. Schmitz, System Dynamics for Mechanical Engineers,
DOI 10.1007/978-1-4614-9293-1_1
1
1.2 System Boundaries
An example of a complex system is shown in Fig. 1.1a. This is a multi-axis ultraprecision machine tool used for manufacturing optics (lenses) and other components
with an accuracy of better than 1 μm (one-millionth of a meter1
). The machine adjusts
the position of rotating tool using five angular and translational degrees of freedom
as shown in Fig. 1.1b, and the rotating tool removes material (Fig. 1.1c) to produce
an optical component with the commanded shape. The tool is positioned relative to
the work material using five machine axes labeled X, Y, Z, B, and C. The X, Y, and Z
axes produce linear motions, while the B and C axes produce rotary motions. With
these five degrees of freedom, the machine can position the tool at an arbitrary
location and an arbitrary angle within the limitation of its work volume.
The machine itself (Fig. 1.1a) is a system shown schematically in Fig. 1.2. At
this high level, the input to the machine is a computer program that is uploaded into
the machine through its computer-based user interface. This “part program”
contains instructions that define the position of the cutting tool at each time during
Fig. 1.1 Ultra-precision machine tool used for manufacturing optical components
1 To provide a sense of scale, the diameter of a human hair is approximately 100 μm.
2 1 Introduction