Thư viện tri thức trực tuyến
Kho tài liệu với 50,000+ tài liệu học thuật
© 2023 Siêu thị PDF - Kho tài liệu học thuật hàng đầu Việt Nam

Switching-Cell current source inverter with improved reliability
Nội dung xem thử
Mô tả chi tiết
Thesis for the Degree of Ph.D.
Switching-Cell Current Source Inverter with
Improved Reliability
School of Architectural, Civil, Environmental, and Energy Engineering,
Major in Environmental and Energy Engineering
The Graduate School
Do Duc Tuan
December 2020
The Graduate School
Kyungpook National University
- i -
Abstract
Switching-Cell Current Source Inverter with
Improved Reliability
By
Do Duc Tuan
Current source inverters (CSIs) are extensively used in many industrial
applications. However, they have a reliability issue because CSIs suffer from
the open-circuit problem. Thus, overlap-time should be inserted in the gate
signals for safe commutation. The overlap-time distorts output current
waveforms and increases the total harmonic distortion of output current.
Moreover, it reduces the current source utilization of the inverter.
The open-circuit problem in the CSIs can be mitigated with switchingcell (SC) structure. SC capacitors with diodes help to reduce dv/dt of power
switches and clamp the over-shoot voltage under open-circuit faults. The new
topologies of the single-phase dual-output (DO) and three-phase four-leg
CSIs are proposed in this thesis.
The single-phase dual-output switching-cell current source inverter (DOSC-CSI) is presented in the first part of the thesis. Two modes of common
and different frequency operations are considered and detailed pulse with
- ii -
modulation schemes are also presented. The two outputs of the proposed
inverter are independent both amplitude and frequency. The proposed
inverter can be used in many applications such as two-phase open-end
winding induction motor drive, smart microgrid applications, photovoltaic
grid-connected systems, etc.
In the second part of the dissertation, a novel four-leg SC-CSI,
abbreviated as H8-SC-CSI, is presented. By using SC structure, current paths
for the input current source are always provided. Therefore, the open-circuit
problem is mitigated and can achieve high reliability. In addition, THD in the
output current is reduced because the switch overlap-time is minimized or
removed.
The switching strategies, analysis, design, simulation, and experimental
verification of two novel topologies of the switching-cell current source
inverter are presented in this dissertation.
- iii -
Contents
Chapter 1. Introduction .......................................................................1
1.1 Background .....................................................................................1
1.2 Benefits and Limitation of the Conventional Inverters...................4
1.3 Switching-Cell Structure.................................................................5
1.4 Contribution of This Thesis............................................................6
1.5 Outline of This Thesis.....................................................................8
Chapter 2. Proposed Single-Phase Dual-Output Switching-Cell
Current Source Inverter........................................................................9
2.1 Conventional Single-phase Dual-output CSI..................................9
2.2 Proposed Topology and Operation Principle ..................................9
2.2.1 Proposed Topology ................................................................9
2.2.2 Carrier-Based PWM with Offset Function ..........................10
2.2.3 Switching State Analysis .....................................................14
2.2.4 Overlap-time ........................................................................17
2.2.5 Reliability Analysis..............................................................20
2.2.6 SC Capacitor Design............................................................23
2.2.7 Inductor Design....................................................................23
2.2.8 Common-Mode Voltage ......................................................24
2.3 Semiconductor Loss Analysis.......................................................26
- iv -
2.3.1 Switching loss......................................................................27
2.3.2 Conduction loss....................................................................28
2.4 Simulation and Experimental Results...........................................30
2.4.1 Simulation Results...............................................................30
2.4.2 Experimental Results...........................................................33
2.4.3 Summary ..............................................................................47
Chapter 3. Proposed Switching-Cell Three-Phase Four-Leg Current
Source Inverter.....................................................................................48
3.1 Conventional Three-Phase Four-Leg Current Source Inverter.....48
3.2 Proposed H8-SC-CSI....................................................................48
3.2.1 Proposed Topology ..............................................................48
3.2.2 Operation Principle of the Proposed H8-SC-CSI ................49
3.2.3 Operation Under Fault Conditions.......................................61
3.2.4 SC Capacitor Design............................................................64
3.2.5 Inductor Design....................................................................65
3.2.6 Common-Mode Voltage ......................................................65
3.3 Power Loss Analysis....................................................................66
3.3.1 Conduction Loss ..................................................................67
3.3.2 Switching Loss.....................................................................68
3.4 Simulation and Experimental Results...........................................70
3.4.1 Simulation Results...............................................................71
3.4.2 Experimental Results...........................................................74
- v -
3.5 Performance Comparisons............................................................81
3.6 Summary .......................................................................................82
Chapter 4. Conclusion ........................................................................84
4.1 Summary and contribution............................................................84
4.2 Publication ....................................................................................85
References ...........................................................................................86
- vi -
List of Figures
Fig. 1.1. Conventional CSI...................................................................2
Fig. 1.2. Conventional single-phase dual-output CSIs.........................3
Fig. 1.3. Conventional four-leg CSI (H8-CSI).....................................5
Fig. 1.4. Series connection of two switching-cell ................................6
Fig. 1.5. Current path under fault condition.........................................6
Fig. 2.1. Proposed single-phase dual-output (DO) SC-CSI ...............10
Fig. 2.2. Carrier and reference signal .................................................12
Fig. 2.3. Switching states of the proposed single-phase DO-SC-CSI.16
Fig. 2.4. Gate signals and simplified equivalent circuits of the proposed
single-phase DO-SC-CSI during overlap-time ....................19
Fig. 2.5. Effects of overlap-time on output current............................20
Fig. 2.6. Simplified equivalent circuits of the conventional and
proposed inverter during dead-time ....................................22
Fig. 2.7. DO-SC-CSI for grid-connected PV system .........................25
Fig. 2.8. The power loss of MOSET and diode of the proposed
inverter... ..............................................................................29
Fig. 2.9. Semiconductor loss comparison in the proposed and other
conventional CSIs. ...............................................................29
Fig. 2.10. Prototype photo of the proposed single-phase DO-SC-CSI..31
Fig. 2.11. Waveforms of the proposed inverter in CF mode with
overlap-time of 0.3 s..........................................................35
Fig. 2.12. Waveforms of the proposed inverter in DF mode with
overlap-time of 0.3 s..........................................................36
Fig. 2.13. Switch voltage stresses of the conventional CSIs under fault
condition during 1 µs dead-time ..........................................37
- vii -
Fig. 2.14. Simulation waveform of the proposed DO-SC-CSI under fault
condition. .............................................................................38
Fig. 2.15. Experimental waveforms of the 2HB CSIs with overlap-time
of 0.8 µs. ..............................................................................39
Fig. 2.16. Experimental waveforms of the DO-CSI [17].....................40
Fig. 2.17. Experimental waveforms of the proposed inverter in the CF
mode with overlap-time of 0.3 s. .....................................42
Fig. 2.18. Experimental waveforms of the proposed inverter in the CF
mode with overlap-time of 0.3 s........................................43
Fig. 2.19. Experimental waveforms of the proposed inverter..............44
Fig. 2.20. Efficiency comparison. ........................................................46
Fig. 3.1. Proposed four-leg SC-CSI (H8-SC-CSI). ............................50
Fig. 3.2. High-frequency loops between legs.....................................50
Fig. 3.3. Space vector diagram for the proposed H8-SC-CSI............51
Fig. 3.4. Key waveforms of the proposed inverter.............................54
Fig. 3.5. Simplified equivalent circuits of the operation of the proposed
inverter in sector I under normal condition..........................59
Fig. 3.6. Simplified equivalent circuits of the proposed inverter during
accidental turn-off. ..............................................................63
Fig. 3.7. Loss breakdown of MOSET and diode of the H8-SC-CSI..68
Fig. 3.8. Simulation waveform of the CSIs under normal
conditions…….....................................................................70
Fig. 3.9. Switch voltage stresses under fault condition with 1 s deadtime. .....................................................................................71
Fig. 3.10. Simulation waveforms of the proposed CSI under fault
condition with 1 s dead-time in each sector.......................72
Fig. 3.11. Prototype of the proposed H8-SC-CSI ................................74
- viii -
Fig. 3.12. Waveform of the H6-CSI in normal condition with 2 s
overlap-time .........................................................................76
Fig. 3.13. Switch voltage stresses of the conventional CSIs under fault
condition during 1 µs dead-time ..........................................76
Fig. 3.14. Waveforms of the proposed CSI under normal condition with
0.2 s overlap-time .............................................................77
Fig. 3.15. Waveforms of the proposed H8-SC-CSI under fault condition
with 1 s dead-time for each sector. ....................................78
Fig. 3.16. Common-mode voltage of the prototype inverters..............79
Fig. 3.17. Efficiency comparison of the prototype inverters................79