Thư viện tri thức trực tuyến
Kho tài liệu với 50,000+ tài liệu học thuật
© 2023 Siêu thị PDF - Kho tài liệu học thuật hàng đầu Việt Nam

Subspace methods for system identification
Nội dung xem thử
Mô tả chi tiết
Communications and Control Engineering
Published titles include:
Stability and Stabilization of Infinite Dimensional Systems with Applications
Zheng-Hua Luo, Bao-Zhu Guo and Omer Morgul
Nonsmooth Mechanics (Second edition)
Bernard Brogliato
Nonlinear Control Systems II
Alberto Isidori
L2-Gain and Passivity Techniques in nonlinear Control
Arjan van der Schaft
Control of Linear Systems with Regulation and Input Constraints
Ali Saberi, Anton A. Stoorvogel and Peddapullaiah Sannuti
Robust and H∞ Control
Ben M. Chen
Computer Controlled Systems
Efim N. Rosenwasser and Bernhard P. Lampe
Dissipative Systems Analysis and Control
Rogelio Lozano, Bernard Brogliato, Olav Egeland and Bernhard Maschke
Control of Complex and Uncertain Systems
Stanislav V. Emelyanov and Sergey K. Korovin
Robust Control Design Using H∞Methods
Ian R. Petersen, Valery A. Ugrinovski and Andrey V. Savkin
Model Reduction for Control System Design
Goro Obinata and Brian D.O. Anderson
Control Theory for Linear Systems
Harry L. Trentelman, Anton Stoorvogel and Malo Hautus
Functional Adaptive Control
Simon G. Fabri and Visakan Kadirkamanathan
Positive 1D and 2D Systems
Tadeusz Kaczorek
Identification and Control Using Volterra Models
Francis J. Doyle III, Ronald K. Pearson and Bobatunde A. Ogunnaike
Non-linear Control for Underactuated Mechanical Systems
Isabelle Fantoni and Rogelio Lozano
Robust Control (Second edition)
Jürgen Ackermann
Flow Control by Feedback
Ole Morten Aamo and Miroslav Krsti´c
Learning and Generalization (Second edition)
Mathukumalli Vidyasagar
Constrained Control and Estimation
Graham C. Goodwin, María M. Seron and José A. De Doná
Randomized Algorithms for Analysis and Control of Uncertain Systems
Roberto Tempo, Giuseppe Calafiore and Fabrizio Dabbene
Switched Linear Systems
Zhendong Sun and Shuzhi S. Ge
Tohru Katayama
Subspace Methods for
System Identification
With 66 Figures
123
Tohru Katayama, PhD
Department of Applied Mathematics and Physics,
Graduate School of Informatics, Kyoto University, Kyoto 606-8501, Japan
Series Editors
E.D. Sontag · M. Thoma · A. Isidori · J.H. van Schuppen
British Library Cataloguing in Publication Data
Katayama, Tohru, 1942-
Subspace methods for system identification : a realization
approach. - (Communications and control engineering)
1. System indentification 2. Stochastic analysis
I. Title
003.1
ISBN-10: 1852339810
Library of Congress Control Number: 2005924307
Apart from any fair dealing for the purposes of research or private study, or criticism or review, as
permitted under the Copyright, Designs and Patents Act 1988, this publication may only be reproduced,
stored or transmitted, in any form or by any means, with the prior permission in writing of the
publishers, or in the case of reprographic reproduction in accordance with the terms of licences issued
by the Copyright Licensing Agency. Enquiries concerning reproduction outside those terms should be
sent to the publishers.
Communications and Control Engineering Series ISSN 0178-5354
ISBN-10 1-85233-981-0
ISBN-13 978-1-85233-981-4
Springer Science+Business Media
springeronline.com
© Springer-Verlag London Limited 2005
MATLAB® is the registered trademark of The MathWorks, Inc., 3 Apple Hill Drive Natick, MA 01760-
2098, U.S.A. http://www.mathworks.com
The use of registered names, trademarks, etc. in this publication does not imply, even in the absence of
a specific statement, that such names are exempt from the relevant laws and regulations and therefore
free for general use.
The publisher makes no representation, express or implied, with regard to the accuracy of the information contained in this book and cannot accept any legal responsibility or liability for any errors or
omissions that may be made.
Typesetting: Camera ready by author
Production: LE-TEX Jelonek, Schmidt & Vöckler GbR, Leipzig, Germany
Printed in Germany
69/3141-543210 Printed on acid-free paper SPIN 11370000
To my family
Preface
Numerous papers on system identification have been published over the last 40 years.
Though there were substantial developments in the theory of stationary stochastic
processes and multivariable statistical methods during 1950s, it is widely recognized
that the theory of system identification started only in the mid-1960s with the publication of two important papers; one due to Astr¨ ˚ om and Bohlin [17], in which the
maximum likelihood (ML) method was extended to a serially correlated time series
to estimate ARMAX models, and the other due to Ho and Kalman [72], in which
the deterministic state space realization problem was solved for the first time using a
certain Hankel matrix formed in terms of impulse responses. These two papers have
laid the foundation for the future developments of system identification theory and
techniques [55].
The scope of the ML identification method of Astr¨ ˚ om and Bohlin [17] was
to build single-input, single-output (SISO) ARMAX models from observed inputoutput data sequences. Since the appearance of their paper, many statistical identification techniques have been developed in the literature, most of which are now comprised under the label of prediction error methods (PEM) or instrumental variable
(IV) methods. This has culminated in the publication of the volumes Ljung [109] and
S¨oderstr¨om and Stoica [145]. At this moment we can say that theory of system identification for SISO systems is established, and the various identification algorithms
have been well tested, and are now available as MATLABR programs.
Also, identification of multi-input, multi-output (MIMO) systems is an important
problem which is not dealt with satisfactorily by PEM methods. The identification
problem based on the minimization of a prediction error criterion (or a least-squares
type criterion), which in general is a complicated function of the system parameters,
has to be solved by iterative descent methods which may get stuck into local minima. Moreover, optimization methods need canonical parametrizations and it may
be difficult to guess a suitable canonical parametrization from the outset. Since no
single continuous parametrization covers all possible multivariable linear systems
with a fixed McMillan degree, it may be necessary to change parametrization in the
course of the optimization routine. Thus the use of optimization criteria and canonical parametrizations can lead to local minima far from the true solution, and t
viii Preface
numerically ill-conditioned problems due to poor identifiability, i.e., to near insensitivity of the criterion to the variations of some parameters. Hence it seems that the
PEM method has inherent difficulties for MIMO systems.
On the other hand, stochastic realization theory, initiated by Faurre [46] and
Akaike [1] and others, has brought in a different philosophy of building models from
data, which is not based on optimization concepts. A key step in stochastic realization is either to apply the deterministic realization theory to a certain Hankel matrix
constructed with sample estimates of the process covariances, or to apply the canonical correlation analysis (CCA) to the future and past of the observed process. These
algorithms have been shown to be implemented very efficiently and in a numerically
stable way by using the tools of modern numerical linear algebra such as the singular
value decomposition (SVD).
Then, a new effort in digital signal processing and system identification based on
the QR decomposition and the SVD emerged in the mid-1980s and many papers have
been published in the literature [100, 101, 118, 119], etc. These realization theorybased techniques have led to a development of various so-called subspace identification methods, including [163,164,169,171–173], etc. Moreover, Van Overschee and
De Moor [165] have published a first comprehensive book on subspace identification
of linear systems. An advantage of subspace methods is that we do not need (nonlinear) optimization techniques, nor we need to impose to the system a canonical
form, so that subspace methods do not suffer from the inconveniences encountered
in applying PEM methods to MIMO system identification.
Though I have been interested in stochastic realization theory for many years,
it was around 1990 that I actually resumed studies on realization theory, including
subspace identification methods. However, realization results developed for deterministic systems on the one hand, and stochastic systems on the other, could not be
applied to the identification of dynamic systems in which both a deterministic test
input and a stochastic disturbance are involved. In fact, the deterministic realization
result does not consider any noise, and the stochastic realization theory developed up
to the early 1990s did address modeling of stochastic processes, or time series, only.
Then, I noticed at once that we needed a new realization theory to understand many
existing subspace methods and their underlying relations and to develop advanced
algorithms. Thus I was fully convinced that a new stochastic realization theory in
the presence of exogenous inputs was needed for further developments of subspace
system identification theory and algorithms.
While we were attending the MTNS (The International Symposium on Mathematical Theory of Networks and Systems) at Regensburg in 1993, I suggested to
Giorgio Picci, University of Padova, that we should do joint work on stochastic realization theory in the presence of exogenous inputs and a collaboration between us
started in 1994 when he stayed at Kyoto University as a visiting professor. Also, I
successively visited him at the University of Padova in 1997. The collaboration has
resulted in several joint papers [87–90, 93, 130, 131]. Professor Picci has in particular introduced the idea of decomposing the output process into deterministic and
stochastic components by using a preliminary orthogonal decomposition, and then
applying the existing deterministic and stochastic realization techniques to each com-
Preface ix
ponent to get a realization theory in the presence of exogenous input. On the other
hand, inspired by the CCA-based approach, I have developed a method of solving a
multi-stage Wiener prediction problem to derive an innovation representation of the
stationary process with an observable exogenous input, from which subspace identification methods are successfully obtained.
This book is an outgrowth of the joint work with Professor Picci on stochastic
realization theory and subspace identification. It provides an in-depth introduction to
subspace methods for system identification of discrete-time linear systems, together
with our results on realization theory in the presence of exogenous inputs and subspace system identification methods. I have included proofs of theorems and lemmas
as much as possible, as well as solutions to problems, in order to facilitate the basic
understanding of the material by the readers and to minimize the effort needed to
consult many references.
This textbook is divided into three parts: Part I includes reviews of basic results,
from numerical linear algebra to Kalman filtering, to be used throughout this book,
Part II provides deterministic and stochastic realization theories developed by Ho
and Kalman, Faurre, and Akaike, and Part III discusses stochastic realization results
in the presence of exogenous inputs and their adaptation to subspace identification
methods; see Section 1.6 for more details. Thus, various people can read this book according to their needs. For example, people with a good knowledge of linear system
theory and Kalman filtering can begin with Part II. Also, people mainly interested
in applications can just read the algorithms of the various identification methods in
Part III, occasionally returning to Part I and/or Part II when needed. I believe that
this textbook should be suitable for advanced students, applied scientists and engineers who want to acquire solid knowledge and algorithms of subspace identification
methods.
I would like to express my sincere thanks to Giorgio Picci who has greatly contributed to our fruitful collaboration on stochastic realization theory and subspace
identification methods over the last ten years. I am deeply grateful to Hideaki Sakai,
who has read the whole manuscript carefully and provided invaluable suggestions,
which have led to many changes in the manuscript. I am also grateful to Kiyotsugu
Takaba and Hideyuki Tanaka for their useful comments on the manuscript. I have
benefited from joint works with Takahira Ohki, Toshiaki Itoh, Morimasa Ogawa,
and Hajime Ase, who told me about many problems regarding modeling and identification of industrial processes.
The related research from 1996 through 2004 has been sponsored by the Grantin-Aid for Scientific Research, the Japan Society of Promotion of Sciences, which is
gratefully acknowledged.
Tohru Katayama
Kyoto, Japan
January 2005
Contents
1 Introduction ................................................... 1
1.1 System Identification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Classical Identification Methods . . . ........................... 4
1.3 Prediction Error Method for State Space Models . . . . . . . . . . . . . . . . 6
1.4 Subspace Methods of System Identification . . . . ................. 8
1.5 Historical Remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
1.6 Outline of the Book . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
1.7 Notes and References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
Part I Preliminaries
2 Linear Algebra and Preliminaries. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
2.1 Vectors and Matrices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
2.2 Subspaces and Linear Independence . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
2.3 Norms of Vectors and Matrices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
2.4 QR Decomposition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
2.5 Projections and Orthogonal Projections . . . . . . . . . . . . . . . . . . . . . . . . 27
2.6 Singular Value Decomposition. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
2.7 Least-Squares Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
2.8 Rank of Hankel Matrices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
2.9 Notes and References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
2.10 Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
3 Discrete-Time Linear Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
3.1 -Transform . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
3.2 Discrete-Time LTI Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
3.3 Norms of Signals and Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
3.4 State Space Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
3.5 Lyapunov Stability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
3.6 Reachability and Observability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
xii Contents
3.7 Canonical Decomposition of Linear Systems. . . . . . . . . . . . . . . . . . . . 55
3.8 Balanced Realization and Model Reduction . . . . . . . . . . . . . . . . . . . . . 58
3.9 Realization Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
3.10 Notes and References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
3.11 Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
4 Stochastic Processes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
4.1 Stochastic Processes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
4.1.1 Markov Processes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
4.1.2 Means and Covariance Matrices . . . . . . . . . . . . . . . . . . . . . . . . 75
4.2 Stationary Stochastic Processes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
4.3 Ergodic Processes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
4.4 Spectral Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
4.5 Hilbert Space and Prediction Theory . . . . . . . . . . . . . . . . . . . . . . . . . . 87
4.6 Stochastic Linear Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95
4.7 Stochastic Linear Time-Invariant Systems . . . . . . . . . . . . . . . . . . . . . . 98
4.8 Backward Markov Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101
4.9 Notes and References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104
4.10 Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105
5 Kalman Filter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107
5.1 Multivariate Gaussian Distribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107
5.2 Optimal Estimation by Orthogonal Projection . . . . . . . . . . . . . . . . . . . 113
5.3 Prediction and Filtering Algorithms . . . . . . . . . . . . . . . . . . . . . . . . . . . 116
5.4 Kalman Filter with Inputs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123
5.5 Covariance Equation of Predicted Estimate . . . . . . . . . . . . . . . . . . . . . 127
5.6 Stationary Kalman Filter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128
5.7 Stationary Backward Kalman Filter . . . . . . . . . . . . . . . . . . . . . . . . . . . 131
5.8 Numerical Solution of ARE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134
5.9 Notes and References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136
5.10 Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137
Part II Realization Theory
6 Realization of Deterministic Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141
6.1 Realization Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141
6.2 Ho-Kalman’s Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142
6.3 Data Matrices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149
6.4 LQ Decomposition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155
6.5 MOESP Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157
6.6 N4SID Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 161
6.7 SVD and Additive Noises. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 166
6.8 Notes and References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 169
6.9 Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 170
Contents xiii
7 Stochastic Realization Theory (1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 171
7.1 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 171
7.2 Stochastic Realization Problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 174
7.3 Solution of Stochastic Realization Problem . . . . . . . . . . . . . . . . . . . . . 176
7.3.1 Linear Matrix Inequality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 177
7.3.2 Simple Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 180
7.4 Positivity and Existence of Markov Models . . . . . . . . . . . . . . . . . . . . . 183
7.4.1 Positive Real Lemma . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 183
7.4.2 Computation of Extremal Points . . . . . . . . . . . . . . . . . . . . . . . . 189
7.5 Algebraic Riccati-like Equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 192
7.6 Strictly Positive Real Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 194
7.7 Stochastic Realization Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 198
7.8 Notes and References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 199
7.9 Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 200
7.10 Appendix: Proof of Lemma 7.4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 201
8 Stochastic Realization Theory (2) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 203
8.1 Canonical Correlation Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 203
8.2 Stochastic Realization Problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 207
8.3 Akaike’s Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 209
8.3.1 Predictor Spaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 209
8.3.2 Markovian Representations . . . . . . . . . . . . . . . . . . . . . . . . . . . . 212
8.4 Canonical Correlations Between Future and Past . . . . . . . . . . . . . . . . 216
8.5 Balanced Stochastic Realization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 217
8.5.1 Forward and Backward State Vectors . . . . . . . . . . . . . . . . . . . . 217
8.5.2 Innovation Representations . . . . . . . . . . . . . . . . . . . . . . . . . . . . 219
8.6 Reduced Stochastic Realization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 223
8.7 Stochastic Realization Algorithms . . . . . . . . . . . . . . . . . . . . . . . . . . . . 227
8.8 Numerical Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 230
8.9 Notes and References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 232
8.10 Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 233
8.11 Appendix: Proof of Lemma 8.5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 234
Part III Subspace Identification
9 Subspace Identification (1) – ORT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 239
9.1 Projections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 239
9.2 Stochastic Realization with Exogenous Inputs . . . . . . . . . . . . . . . . . . . 241
9.3 Feedback-Free Processes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 243
9.4 Orthogonal Decomposition of Output Process . . . . . . . . . . . . . . . . . . . 245
9.4.1 Orthogonal Decomposition . . . . . . . . . . . . . . . . . . . . . . . . . . . . 245
9.4.2 PE Condition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 246
9.5 State Space Realizations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 248
9.5.1 Realization of Stochastic Component . . . . . . . . . . . . . . . . . . . 248
xiv Contents
9.5.2 Realization of Deterministic Component . . . . . . . . . . . . . . . . . 249
9.5.3 The Joint Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 253
9.6 Realization Based on Finite Data. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 254
9.7 Subspace Identification Method – ORT Method . . . . . . . . . . . . . . . . . 256
9.7.1 Subspace Identification of Deterministic Subsystem . . . . . . . 256
9.7.2 Subspace Identification of Stochastic Subsystem . . . . . . . . . . 259
9.8 Numerical Example. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 261
9.9 Notes and References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 265
9.10 Appendix: Proofs of Theorem and Lemma . . . . . . . . . . . . . . . . . . . . . 265
9.10.1 Proof of Theorem 9.1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 265
9.10.2 Proof of Lemma 9.7 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 268
10 Subspace Identification (2) – CCA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 271
10.1 Stochastic Realization with Exogenous Inputs . . . . . . . . . . . . . . . . . . . 271
10.2 Optimal Predictor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 275
10.3 Conditional Canonical Correlation Analysis . . . . . . . . . . . . . . . . . . . . 278
10.4 Innovation Representation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 282
10.5 Stochastic Realization Based on Finite Data . . . . . . . . . . . . . . . . . . . . 286
10.6 CCA Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 288
10.7 Numerical Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 292
10.8 Notes and References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 296
11 Identification of Closed-loop System . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 299
11.1 Overview of Closed-loop Identification . . . . . . . . . . . . . . . . . . . . . . . . 299
11.2 Problem Formulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 301
11.2.1 Feedback System . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 301
11.2.2 Identification by Joint Input-Output Approach . . . . . . . . . . . . 303
11.3 CCA Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 304
11.3.1 Realization of Joint Input-Output Process . . . . . . . . . . . . . . . . 304
11.3.2 Subspace Identification Method . . . . . . . . . . . . . . . . . . . . . . . . 307
11.4 ORT Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 309
11.4.1 Orthogonal Decomposition of Joint Input-Output Process . . 309
11.4.2 Realization of Closed-loop System . . . . . . . . . . . . . . . . . . . . . 311
11.4.3 Subspace Identification Method . . . . . . . . . . . . . . . . . . . . . . . . 312
11.5 Model Reduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 315
11.6 Numerical Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 317
11.6.1 Example 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 318
11.6.2 Example 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 321
11.7 Notes and References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 323
11.8 Appendix: Identification of Stable Transfer Matrices . . . . . . . . . . . . . 324
11.8.1 Identification of Deterministic Parts . . . . . . . . . . . . . . . . . . . . . 324
11.8.2 Identification of Noise Models . . . . . . . . . . . . . . . . . . . . . . . . . 325
Contents xv
Appendix
A Least-Squares Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 329
A.1 Linear Regressions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 329
A.2 LQ Decomposition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 334
B Input Signals for System Identification . . . . . . . . . . . . . . . . . . . . . . . . . . . 337
C Overlapping Parametrization. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 343
D List of Programs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 349
D.1 Deterministic Realization Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . 349
D.2 MOESP Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 350
D.3 Stochastic Realization Algorithms . . . . . . . . . . . . . . . . . . . . . . . . . . . . 351
D.4 Subspace Identification Algorithms. . . . . . . . . . . . . . . . . . . . . . . . . . . . 353
E Solutions to Problems. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 357
Glossary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 377
References. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 379
Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 389
1
Introduction
In this introductory chapter, we briefly review the classical prediction error method
(PEM) for identifying linear time-invariant (LTI) systems. We then discuss the basic
idea of subspace methods of system identification, together with the advantages of
subspace methods over the PEM as applied to multivariable dynamic systems.
1.1 System Identification
Figure 1.1 shows a schematic diagram of a dynamic system with input , output
and disturbance . We can observe and but not ; we can directly manipulate
the input but not . Even if we do not know the inside structure of the system,
the measured input and output data provide useful information about the system
behavior. Thus, we can construct mathematical models to describe dynamics of the
system of interest from observed input-output data.
Figure 1.1. A system with input and disturbance
Dynamic models for prediction and control include transfer functions, state space
models, time-series models, which are parametrized in terms of finite number of
parameters. Thus these dynamic models are referred to as parametric models. Also
used are non-parametric models such as impulse responses, and frequency responses,
spectral density functions, etc.
System identification is a methodology developed mainly in the area of automatic
control, by which we can choose the best model(s) from a given model se