Thư viện tri thức trực tuyến
Kho tài liệu với 50,000+ tài liệu học thuật
© 2023 Siêu thị PDF - Kho tài liệu học thuật hàng đầu Việt Nam

Statics and Mechanics of Structures
Nội dung xem thử
Mô tả chi tiết
Statics and Mechanics of Structures
Steen Krenk Jan Høgsberg
Statics and
Mechanics of
Structures
Prof. Steen Krenk
Department of Mechanical Engineering
Technical University of Denmark
Kongens Lyngby, Denmark
Prof. Jan Høgsberg
Department of Mechanical Engineering
Technical University of Denmark
Kongens Lyngby, Denmark
ISBN 978-94-007-6112-4 ISBN 978-94-007-6113-1 (eBook)
DOI 10.1007/978-94-007-6113-1
Springer Dordrecht Heidelberg New York London
Library of Congress Control Number: 2013933869
© Springer Science+Business Media Dordrecht 2013
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of
the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology
now known or hereafter developed. Exempted from this legal reservation are brief excerpts in connection
with reviews or scholarly analysis or material supplied specifically for the purpose of being entered
and executed on a computer system, for exclusive use by the purchaser of the work. Duplication of
this publication or parts thereof is permitted only under the provisions of the Copyright Law of the
Publisher’s location, in its current version, and permission for use must always be obtained from Springer.
Permissions for use may be obtained through RightsLink at the Copyright Clearance Center. Violations
are liable to prosecution under the respective Copyright Law.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
While the advice and information in this book are believed to be true and accurate at the date of publication, neither the authors nor the editors nor the publisher can accept any legal responsibility for any
errors or omissions that may be made. The publisher makes no warranty, express or implied, with respect
to the material contained herein.
Cover photo: Golden Terraces Shopping Mall, Warsaw. Designed by the Jerde Partnership, completed
2007. Photo by Steen Krenk
Printed on acid-free paper
Springer is part of Springer Science+Business Media (www.springer.com)
Preface
The theory of statics of structures has developed from intuition via gradual refinement to its current state, where the basic principles are put into a
systematic framework that enables precise analysis. Although the basic laws
governing statics of structures have been known for several centuries, the
methods of analysis have developed considerably over the last decades. At
the current state of this development an introductory book on statics should
aim at the dual goal of providing sufficient background for developing an
intuitive understanding of structures, and at the same time lay a solid foundation for modern analysis, typically made by computational techniques. In
this vein the present book makes extensive use of simple but realistic examples to develop familiarity and understanding of how structures carry and
distribute the loads through the structural members to the supports. This is
then supplemented by a few simple computer programs that illustrate, how
the theories for trusses and frames are implemented, and open up to a more
general approach to computational mechanics as a natural extension of the
present book.
The book is organized as follows. The first five chapters build up a basic
understanding of the statics of structures. It starts with force systems and
reactions in Chapter 1, then proceeding to the intuitively very accessible
theory of trusses, first analyzed by hand calculation procedures and then
reformulated as a small systematic finite element program MiniTruss in
Chapter 2. Chapter 3 develops the statics of beams and introduces the concept of internal forces. The internal forces are then related to deformation
mechanisms of curvature, shear and extension in Chapter 4, and the principle of virtual work is developed in a concise form and used for calculation
of specific displacements. The introductory part is rounded off in Chapter 5
on the analysis of columns, describing instability as a bifurcation problem,
solved by eigenvalue analysis, and design principles based on the existence of
a characteristic imperfection. This part of the book covers material suitable
for an introductory one-semester course on basic statics of structures.
The remaining six chapters treat various extensions, that are typically included in one form or another in a second semester course. The Chapters 6
and 7 deal with analysis of statically indeterminate frame structures. The
vi Preface
first of these chapters gives a systematic development of the force method
and describes how simple structures can conveniently be analyzed by hand.
The following chapter then develops the deformation method in which the
displacements of individual nodes play the key role. This then serves to introduce the idea of the finite element formulation of frame structures. This
development is supported by the small program MiniFrame for internal
forces and displacements, and an extension MiniFrameS for linearized stability analysis. The Chapters 8 and 9 introduce three-dimensional states of
stress and strain, and present the theory of linear elasticity and some common
failure conditions. This material provides the background for the Chapters 10
and 11, in which the simple two-dimensional beam theory used in the previous chapters is extended to flexure and torsion of non-symmetric beams, and
the associated shear stress distributions.
The three small computer programs are coded in Matlab. The syntax and
input structure are described in connection with the corresponding theory in
the text, and the code is available from the authors via e-mail.
The authors are grateful for the permission to include photographs provided
by the following companies: Chapter 7, Rafsanjan Bridge, Waagner-Biro AG,
Vienna, Austria; Chapter 8, Test of wind turbine blade, LM Wind Power,
Kolding, Denmark; Chapter 10, Wind turbine, Siemens Wind Power, Brande,
Denmark.
Kgs. Lyngby Steen Krenk
September 2012 Jan Høgsberg
Contents
1 Equilibrium and Reactions ................................ 1
1.1 Forces. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.1.1 The parallelogram rule . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.1.2 Parallel forces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.2 Moments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.2.1 Moment from forces in a plane . . . . . . . . . . . . . . . . . . . . . 6
1.2.2 Moment from forces in space . . . . . . . . . . . . . . . . . . . . . . . 8
1.2.3 Force couples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
1.3 Equilibrium . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
1.3.1 Virtual work of rigid bodies. . . . . . . . . . . . . . . . . . . . . . . . 11
1.3.2 Equilibrium in a plane . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
1.3.3 Distributed load . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
1.4 Support conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
1.5 Reactions by equilibrium equations . . . . . . . . . . . . . . . . . . . . . . . 19
1.5.1 Plane beams . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
1.5.2 Simple frames . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
1.5.3 Three-hinge frame . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
1.5.4 Space structures. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
1.6 Reactions by virtual work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
1.7 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
2 Truss Structures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
2.1 Basic principles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
2.1.1 Building with triangles . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
2.1.2 Counting joints and bars . . . . . . . . . . . . . . . . . . . . . . . . . . 43
2.1.3 Qualitative tension-compression considerations . . . . . . . 45
2.2 Method of joints . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
2.2.1 Planar truss structures . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
2.2.2 Space trusses . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
2.3 Method of sections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
2.3.1 Bar forces via the method of sections . . . . . . . . . . . . . . . 55
2.3.2 Special types of planar trusses . . . . . . . . . . . . . . . . . . . . . 57
2.4 Stiffness and deformation of truss structures . . . . . . . . . . . . . . . 64
2.4.1 Axial stress and strain . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
viii Contents
2.4.2 Linear elastic bars . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
2.4.3 Virtual work for truss structures . . . . . . . . . . . . . . . . . . . 67
2.4.4 Displacements of elastic truss structures . . . . . . . . . . . . . 71
2.5 Finite element analysis of trusses . . . . . . . . . . . . . . . . . . . . . . . . . 73
2.5.1 Elastic bar element . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
2.5.2 Finite Element Method for trusses . . . . . . . . . . . . . . . . . . 77
2.5.3 The MiniTruss program . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
2.6 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
3 Statics of Beams and Frames . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91
3.1 Internal forces and moments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93
3.2 Beams with concentrated loads . . . . . . . . . . . . . . . . . . . . . . . . . . . 95
3.2.1 Variation of internal forces for concentrated loads . . . . 99
3.3 Beams with distributed load . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104
3.3.1 Differential equations for internal forces . . . . . . . . . . . . . 107
3.3.2 Maximum moment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109
3.4 Combined loads . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116
3.4.1 Superposition of load cases . . . . . . . . . . . . . . . . . . . . . . . . 116
3.4.2 Superimposing the distributed load . . . . . . . . . . . . . . . . . 117
3.5 Internal forces in frames . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121
3.5.1 Influence of load distribution. . . . . . . . . . . . . . . . . . . . . . . 124
3.5.2 Influence of support conditions . . . . . . . . . . . . . . . . . . . . . 128
3.5.3 Three-hinge frame . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131
3.5.4 Principle of the arch . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133
3.6 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136
4 Deformation of Beams and Frames . . . . . . . . . . . . . . . . . . . . . . . 143
4.1 Bending of elastic beams . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144
4.1.1 Homogeneous bending . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145
4.1.2 Linear kinematic relations . . . . . . . . . . . . . . . . . . . . . . . . . 148
4.2 Bernoulli beam theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151
4.2.1 Statically determinate beams . . . . . . . . . . . . . . . . . . . . . . 154
4.2.2 Statically indeterminate beams . . . . . . . . . . . . . . . . . . . . . 159
4.3 Shear flexible beams . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 162
4.4 Virtual work and displacements of beams . . . . . . . . . . . . . . . . . . 168
4.4.1 Principle of virtual work . . . . . . . . . . . . . . . . . . . . . . . . . . 168
4.4.2 Displacements in elastic beams . . . . . . . . . . . . . . . . . . . . . 171
4.4.3 Virtual work and displacements in frames . . . . . . . . . . . 179
4.5 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 184
5 Column Stability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 189
5.1 Beam with normal force . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 190
5.1.1 Stiffness reduction from normal force . . . . . . . . . . . . . . . 193
5.2 Stability of the ideal column . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 194
Contents ix
5.2.1 Equivalent column length . . . . . . . . . . . . . . . . . . . . . . . . . 203
5.2.2 Buckling direction and intermediate supports . . . . . . . . 205
5.3 Design of columns . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 207
5.3.1 Column length and slenderness . . . . . . . . . . . . . . . . . . . . . 208
5.3.2 Geometric imperfections. . . . . . . . . . . . . . . . . . . . . . . . . . . 212
5.3.3 Stresses in column cross-sections . . . . . . . . . . . . . . . . . . . 215
5.3.4 Perry-Robertson’s column design criterion . . . . . . . . . . . 218
5.4 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 222
6 The Force Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 227
6.1 Principle of the force method . . . . . . . . . . . . . . . . . . . . . . . . . . . . 228
6.2 The general force method. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 233
6.2.1 Released structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 233
6.2.2 The basic steps . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 237
6.2.3 Summary of the force method . . . . . . . . . . . . . . . . . . . . . . 241
6.3 Application of the Force Method . . . . . . . . . . . . . . . . . . . . . . . . . 242
6.4 The force method for frame structures . . . . . . . . . . . . . . . . . . . . 250
6.4.1 Simply supported frames . . . . . . . . . . . . . . . . . . . . . . . . . . 251
6.4.2 Frames with fixed supports . . . . . . . . . . . . . . . . . . . . . . . . 257
6.5 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 261
7 Deformation and Element Methods for Frames . . . . . . . . . . . 267
7.1 Stiffness of beams . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 268
7.1.1 Symmetric and anti-symmetric bending . . . . . . . . . . . . . 269
7.1.2 Basic cases of imposed deformation . . . . . . . . . . . . . . . . . 271
7.1.3 Loads on constrained beams . . . . . . . . . . . . . . . . . . . . . . . 277
7.2 Deformation method for frames . . . . . . . . . . . . . . . . . . . . . . . . . . 278
7.3 Beam elements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 296
7.3.1 Beam bending element . . . . . . . . . . . . . . . . . . . . . . . . . . . . 297
7.3.2 Beam-column element. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 299
7.3.3 Transformation to global form . . . . . . . . . . . . . . . . . . . . . 305
7.4 Finite element method for frames . . . . . . . . . . . . . . . . . . . . . . . . . 307
7.4.1 The MiniFrame program . . . . . . . . . . . . . . . . . . . . . . . . . . 308
7.4.2 Stability analysis of frames . . . . . . . . . . . . . . . . . . . . . . . . 312
7.5 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 316
8 Stresses and Strains . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 321
8.1 Stress . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 322
8.1.1 The stress vector . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 322
8.1.2 General stress components . . . . . . . . . . . . . . . . . . . . . . . . . 324
8.1.3 Equilibrium . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 329
8.2 Deformation and strain. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 332
8.2.1 Strain . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 332
8.2.2 Rotation at a point . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 337
x Contents
8.2.3 Displacement decomposition . . . . . . . . . . . . . . . . . . . . . . . 337
8.3 Virtual work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 338
8.3.1 Equation of virtual work . . . . . . . . . . . . . . . . . . . . . . . . . . 338
8.3.2 Matrix and tensor notation . . . . . . . . . . . . . . . . . . . . . . . . 341
8.4 Special states of stress and strain . . . . . . . . . . . . . . . . . . . . . . . . . 342
8.4.1 Plane stress and plane strain . . . . . . . . . . . . . . . . . . . . . . . 342
8.4.2 Stress and strain transformations . . . . . . . . . . . . . . . . . . . 343
8.4.3 Principal stresses and strains in a plane . . . . . . . . . . . . . 349
8.4.4 Principal stresses in three dimensions . . . . . . . . . . . . . . . 354
8.5 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 358
9 Material Behavior . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 363
9.1 Elastic materials . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 364
9.1.1 Internal elastic energy . . . . . . . . . . . . . . . . . . . . . . . . . . . . 365
9.1.2 Linear isotropic elasticity . . . . . . . . . . . . . . . . . . . . . . . . . . 367
9.2 Mean and deviator components . . . . . . . . . . . . . . . . . . . . . . . . . . 376
9.3 Yield conditions for metals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 380
9.3.1 Von Mises’ yield condition . . . . . . . . . . . . . . . . . . . . . . . . . 380
9.3.2 Tresca’s yield condition . . . . . . . . . . . . . . . . . . . . . . . . . . . 384
9.4 Coulomb’s theory of friction materials . . . . . . . . . . . . . . . . . . . . . 385
9.4.1 Critical section and stress state . . . . . . . . . . . . . . . . . . . . 386
9.4.2 Coulomb failure surface . . . . . . . . . . . . . . . . . . . . . . . . . . . 388
9.5 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 391
10 General Bending of Beams. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 395
10.1 Bending of non-symmetric beams . . . . . . . . . . . . . . . . . . . . . . . . . 397
10.1.1 Kinematic formulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 397
10.1.2 Stresses and section forces . . . . . . . . . . . . . . . . . . . . . . . . . 400
10.2 Cross-section analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 403
10.2.1 Elastic center . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 403
10.2.2 Moments of inertia . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 411
10.2.3 Principal coordinate system. . . . . . . . . . . . . . . . . . . . . . . . 417
10.3 Axial stresses and strains . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 425
10.3.1 Neutral axis and line of curvature . . . . . . . . . . . . . . . . . . 434
10.4 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 440
11 Flexure and Torsion of Beams . . . . . . . . . . . . . . . . . . . . . . . . . . . . 443
11.1 Shear stresses in beam flexure . . . . . . . . . . . . . . . . . . . . . . . . . . . . 444
11.1.1 Shear flow – Grashof’s formula . . . . . . . . . . . . . . . . . . . . . 445
11.1.2 Shear stress on cross-section . . . . . . . . . . . . . . . . . . . . . . . 449
11.2 Thin-walled cross-sections in shear . . . . . . . . . . . . . . . . . . . . . . . . 455
11.2.1 Shear center . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 462
11.2.2 Shear flexibility . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 465
11.3 Torsion of circular cylinders . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 467
Contents xi
11.4 General homogeneous torsion of beams . . . . . . . . . . . . . . . . . . . . 472
11.4.1 The Prandtl stress function . . . . . . . . . . . . . . . . . . . . . . . . 475
11.5 Torsion of thin-walled beams . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 480
11.5.1 Open sections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 480
11.5.2 Single-cell sections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 484
11.5.3 Multi-cell sections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 490
11.6 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 493
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 499
Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 501
Equilibrium and Reactions 1
Statics of structures deals with structures that are exposed to loads and
develop reactions and internal forces that leave the structure stationary. The
present book deals with buildings and civil engineering structures that are
supported to prevent motion, as opposed to space structures, trains etc. where
motion is an integral part of the behavior. A fundamental tool of statics is the
concept of equilibrium. In order to remain stationary the total effect of the
loads and the reactions provided by the supports must be in equilibrium. This
applies to the full structure and also to its different parts. In this chapter the
equilibrium conditions for the full structure are used to identify requirements
for the supports and to determine the reactions provided by the supports.
The concept of equilibrium is developed further in the following chapters to
deal with hypothetical parts of the structure, and thereby obtain knowledge
of the distribution of the forces inside the structure.
First the notion of a force is introduced in Section 1.1. A force is specified by
its magnitude and its line of action, and is closely related to the mathematical concept of a vector. If two forces have intersecting lines of action they
combine as vectors, and act at the point of intersection. However, this concept of intersecting forces is too limited, and it is necessary to introduce the
notion of a moment, as described in Section 1.2. When considering forces and
moments together, the concept of equilibrium takes a precise mathematical
form, discussed in Section 1.3. The direct form of the equilibrium conditions
constitutes two vector equations for the total force and the total moment,
respectively. It is explained in detail, how these equations can be combined
S. Krenk, J. Høgsberg, Statics and Mechanics of Structures,
DOI 10.1007/978-94-007-6113-1 1,
© Springer Science+Business Media Dordrecht 2013
2 Equilibrium and Reactions
into a single scalar equation of virtual work – that is the work that the forces
and moments would perform, if subjected to an arbitrary small virtual displacement. The virtual work is here introduced in its basic form, but appears
in a more advanced form later in connection with deformation of beams and
frames. The concept of virtual work plays a central role in the modern formulation of theories for structures and solid bodies, e.g. in connection with the
formulation of numerical methods. The two last sections of the chapter deal
with the support conditions and the reactions developed in the supports.
1.1 Forces
The notion of a force is fundamental to the theory of structures. A force
is associated with a magnitude, a direction, and a point of action. In the
analysis of forces it is convenient first to focus on the direction and magnitude,
combined in the boldface vector symbol P. The magnitude is represented by
the length of the vector and is denoted by P = |P|. In practice a force often
has a specific point of action, but it is often convenient to consider the force
as acting in a line of action, defined as the line obtained by extending the
force vector in space. This notion permits the force to be translated along
its line of action, and leads to a fairly intuitive formulation of the theory of
equilibrium of a set of one or more forces.
1.1.1 The parallelogram rule
It is an important property of a force P that it can be resolved into components according to the parallelogram rule, known from elementary vector analysis, see e.g. Strang (2001). The parallelogram rule is illustrated in
Fig. 1.1 showing the force P and two directions intersecting the line of action
of P. For convenience and clarity the point of intersection is shown as the
point of action of the force P in the figure. If this is not the case for the initial
location of P, it is translated to the point of intersection along the line of
action.
Fig. 1.1: Decomposition of force P in given direction.
The parallelogram rule for resolving a force P into components P1 and P2
with given directions consists in forming a parallelogram with P along a
Forces 3
diagonal and the components P1 and P2 along adjoining sides as shown in
Fig. 1.1b.
The parallelogram rule can also be used to form the resulting force from two
given forces P1 and P2, when these forces have intersecting lines of action.
The construction of the parallelogram follows from sliding the forces P1 and
P2 to the point of intersection. They then form the sides of a parallelogram
with the resultant P along the diagonal as shown in Fig. 1.1b.
Example 1.1. Force on a string. Figure 1.2 shows a simple example of the force parallelogram rule. A vertical force is acting on a string, which is stretched, forming two linear
parts. These parts carry constant forces T1 and T2, in the direction of the respective
strings.
Fig. 1.2: Cable carries P via the forces T1 and T2.
In a static analysis of simple structures the forces may be referred directly to
directions in the structure, e.g. as along or transverse to a beam. However, in
larger analyzes, and when using a computer for the numerical computations,
it is often convenient to represent forces by their components in a Cartesian
coordinate system. In this case two forces P1 and P2 are represented by their
xyz-components as
P1 =
⎡
⎢
⎣
P1
x
P1
y
P1
z
⎤
⎥
⎦ , P2 =
⎡
⎢
⎣
P2
x
P2
y
P2
z
⎤
⎥
⎦ , (1.1)
and it then follows from the parallelogram composition rule that the resultant
force P has the components
⎡
⎢
⎣
Px
Py
Pz
⎤
⎥
⎦ =
⎡
⎢
⎣
P1
x
P1
y
P1
z
⎤
⎥
⎦ +
⎡
⎢
⎣
P2
x
P2
y
P2
z
⎤
⎥
⎦ . (1.2)
It should be noted that this standard addition rule of vector components
must be accompanied by an account of the resultant’s line of action.
4 Equilibrium and Reactions
1.1.2 Parallel forces
In the case of two parallel forces their lines of action do not intersect, and
thus the parallelogram rule needs an extension. The problem is illustrated in
Fig. 1.3 showing two parallel forces with distance a and magnitude P1 and
P2, respectively. In principle the magnitude and location of the resulting force
P can be obtained as a limit of the two forces, if inclined slightly with their
original common direction. However, it is more direct to obtain the result by
introducing two auxiliary forces as demonstrated here.
Fig. 1.3: Parallel forces with distance a.
In order to increase the clarity of the geometric construction the two forces
P1 and P2 are first translated along their respective lines of action, until
their points of application A1 and A2 lie on a line orthogonal to the lines of
action as shown in Fig. 1.4a. Two forces of equal magnitude Q but opposite
direction along the connecting line are now added as shown in the figure. As
these forces are opposite with the same line of action they have the sum zero,
and therefore do not change the resulting force of the system. There is now
a force P1 + Q acting at A1 and a force P2 − Q acting at A2. These forces
are not parallel, and they can therefore be combined by the parallelogram
rule, whereby the resulting force P = P1 + P2 passes through the point of
intersection C of the lines of action.
Fig. 1.4: Composition of parallel forces.
The line of action of the resulting force P is characterized by the distance a1
from P1 and the distance a2 from P2. The figure contains similar triangles