Siêu thị PDFTải ngay đi em, trời tối mất

Thư viện tri thức trực tuyến

Kho tài liệu với 50,000+ tài liệu học thuật

© 2023 Siêu thị PDF - Kho tài liệu học thuật hàng đầu Việt Nam

SOIL MECHANICS - CHAPTER 30 pptx
MIỄN PHÍ
Số trang
4
Kích thước
168.2 KB
Định dạng
PDF
Lượt xem
1596

SOIL MECHANICS - CHAPTER 30 pptx

Nội dung xem thử

Mô tả chi tiết

Chapter 30

FLAMANT

In 1892 Flamant obtained the solution for a vertical line load on a homogeneous isotropic linear elastic half space, see Figure 30.1. This is the two

.....................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................

.....................................................................................................

..................................................................................................... ....................................................................................................

..................................................................................................... ....................................................................................................

..................................................................................................... ....................................................................................................

..................................................................................................... ....................................................................................................

..................................................................................................... ....................................................................................................

..................................................................................................... ....................................................................................................

..................................................................................................... ....................................................................................................

..................................................................................................... ....................................................................................................

..................................................................................................... ....................................................................................................

..................................................................................................... ....................................................................................................

..................................................................................................... ....................................................................................................

..................................................................................................... ....................................................................................................

..................................................................................................... ....................................................................................................

..................................................................................................... ....................................................................................................

..................................................................................................... ....................................................................................................

..................................................................................................... ....................................................................................................

..................................................................................................... ....................................................................................................

..................................................................................................... ....................................................................................................

..................................................................................................... ....................................................................................................

..................................................................................................... ....................................................................................................

..................................................................................................... ....................................................................................................

..................................................................................................... ....................................................................................................

..................................................................................................... ....................................................................................................

..................................................................................................... ....................................................................................................

..................................................................................................... ....................................................................................................

..................................................................................................... ....................................................................................................

..................................................................................................... ....................................................................................................

..................................................................................................... ....................................................................................................

..................................................................................................... ....................................................................................................

..................................................................................................... ....................................................................................................

..................................................................................................... ....................................................................................................

..................................................................................................... ....................................................................................................

..................................................................................................... ....................................................................................................

..................................................................................................... ....................................................................................................

..................................................................................................... ....................................................................................................

..................................................................................................... ....................................................................................................

..................................................................................................... ....................................................................................................

..................................................................................................... ....................................................................................................

..................................................................................................... ....................................................................................................

..................................................................................................... ....................................................................................................

..........................

.........................

.

.

...............

.....................................

.

.

.

.

.........

...

...

.........................

................................

...........

...............................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................

.....

.........

..... .

.

.

....

....

...

.

θ r

x

z

F

σxx

σxz

σzz

σzx

Figure 30.1: Flamant’s Problem.

dimensional equivalent of Boussinesq’s basic problem. It can be considered as

the superposition of an infinite number of point loads, uniformly distributed

along the y-axis. A derivation is given in Appendix B.

In this case the stresses in the x, z-plane are

σzz =

2F

π

z

3

r

4

=

2F

πr

cos3

θ, (30.1)

σxx =

2F

π

x

2

z

r

4

=

2F

πr

sin2

θ cos θ, (30.2)

σxz =

2F

π

xz2

r

4

=

2F

πr

sin θ cos2

θ. (30.3)

In these equations r =

x

2 + z

2. The quantity F has the dimension of a

force per unit length, so that F/r has the dimension of a stress.

Expressions for the displacements are also known, but these contain singular terms, with a factor ln r. This factor is infinitely large in the

origin and at infinity. Therefore these expressions are not so useful.

On the basis of Flamant’s solution several other solutions may be obtained using the principle of superposition. An example is the case of a

uniform load of magnitude p on a strip of width 2a, see Figure 30.2. In this case the stresses are

σzz =

p

π

[(θ1 − θ2) + sin θ1 cos θ1 − sin θ2 cos θ2], (30.4)

σxx =

p

π

[(θ1 − θ2) − sin θ1 cos θ1 + sin θ2 cos θ2], (30.5)

σxz =

p

π

[cos2

θ2 − cos2

θ1]. (30.6)

168

Tải ngay đi em, còn do dự, trời tối mất!