Thư viện tri thức trực tuyến
Kho tài liệu với 50,000+ tài liệu học thuật
© 2023 Siêu thị PDF - Kho tài liệu học thuật hàng đầu Việt Nam

SOIL MECHANICS - CHAPTER 30 pptx
Nội dung xem thử
Mô tả chi tiết
Chapter 30
FLAMANT
In 1892 Flamant obtained the solution for a vertical line load on a homogeneous isotropic linear elastic half space, see Figure 30.1. This is the two
.....................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................
.....................................................................................................
..................................................................................................... ....................................................................................................
..................................................................................................... ....................................................................................................
..................................................................................................... ....................................................................................................
..................................................................................................... ....................................................................................................
..................................................................................................... ....................................................................................................
..................................................................................................... ....................................................................................................
..................................................................................................... ....................................................................................................
..................................................................................................... ....................................................................................................
..................................................................................................... ....................................................................................................
..................................................................................................... ....................................................................................................
..................................................................................................... ....................................................................................................
..................................................................................................... ....................................................................................................
..................................................................................................... ....................................................................................................
..................................................................................................... ....................................................................................................
..................................................................................................... ....................................................................................................
..................................................................................................... ....................................................................................................
..................................................................................................... ....................................................................................................
..................................................................................................... ....................................................................................................
..................................................................................................... ....................................................................................................
..................................................................................................... ....................................................................................................
..................................................................................................... ....................................................................................................
..................................................................................................... ....................................................................................................
..................................................................................................... ....................................................................................................
..................................................................................................... ....................................................................................................
..................................................................................................... ....................................................................................................
..................................................................................................... ....................................................................................................
..................................................................................................... ....................................................................................................
..................................................................................................... ....................................................................................................
..................................................................................................... ....................................................................................................
..................................................................................................... ....................................................................................................
..................................................................................................... ....................................................................................................
..................................................................................................... ....................................................................................................
..................................................................................................... ....................................................................................................
..................................................................................................... ....................................................................................................
..................................................................................................... ....................................................................................................
..................................................................................................... ....................................................................................................
..................................................................................................... ....................................................................................................
..................................................................................................... ....................................................................................................
..................................................................................................... ....................................................................................................
..................................................................................................... ....................................................................................................
..........................
.........................
.
.
...............
.....................................
.
.
.
.
.........
...
...
.........................
................................
...........
...............................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................
.....
.........
..... .
.
.
....
....
...
.
θ r
x
z
F
σxx
σxz
σzz
σzx
Figure 30.1: Flamant’s Problem.
dimensional equivalent of Boussinesq’s basic problem. It can be considered as
the superposition of an infinite number of point loads, uniformly distributed
along the y-axis. A derivation is given in Appendix B.
In this case the stresses in the x, z-plane are
σzz =
2F
π
z
3
r
4
=
2F
πr
cos3
θ, (30.1)
σxx =
2F
π
x
2
z
r
4
=
2F
πr
sin2
θ cos θ, (30.2)
σxz =
2F
π
xz2
r
4
=
2F
πr
sin θ cos2
θ. (30.3)
In these equations r =
√
x
2 + z
2. The quantity F has the dimension of a
force per unit length, so that F/r has the dimension of a stress.
Expressions for the displacements are also known, but these contain singular terms, with a factor ln r. This factor is infinitely large in the
origin and at infinity. Therefore these expressions are not so useful.
On the basis of Flamant’s solution several other solutions may be obtained using the principle of superposition. An example is the case of a
uniform load of magnitude p on a strip of width 2a, see Figure 30.2. In this case the stresses are
σzz =
p
π
[(θ1 − θ2) + sin θ1 cos θ1 − sin θ2 cos θ2], (30.4)
σxx =
p
π
[(θ1 − θ2) − sin θ1 cos θ1 + sin θ2 cos θ2], (30.5)
σxz =
p
π
[cos2
θ2 − cos2
θ1]. (30.6)
168