Thư viện tri thức trực tuyến
Kho tài liệu với 50,000+ tài liệu học thuật
© 2023 Siêu thị PDF - Kho tài liệu học thuật hàng đầu Việt Nam

Soil mechanics - Chapter 16 pot
Nội dung xem thử
Mô tả chi tiết
Chapter 16
ANALYTICAL SOLUTION
In this chapter an analytical solution of the one dimensional consolidation problem is given. In soil mechanics this solution was first given by
Terzaghi, in 1923. In mathematics the solution had been known since the beginning of the 19th century. Fourier developed the solution to
determine the heating and cooling of a metal strip, which is governed by the same differential equation.
16.1 The problem
The mathematical problem of one dimensional consolidation has been established in the previous chapter. The differential equation is
∂p
∂t = cv
∂
2p
∂z2
, (16.1)
with the initial condition
t = 0 : p = p0 =
q
1 + nβ/mv
, (16.2)
in which q the load applied at time t = 0. It is assumed that the load remains constant for t > 0.
The boundary conditions are, for the case of a sample of height h, drained at its top and impermeable at the bottom,
z = 0 :
∂p
∂z = 0, (16.3)
z = h : p = 0. (16.4)
These equations describe the consolidation of a soil sample in an oedometer test, or a confined compression test, with a constant load, and drained
............................................................................................................................................................................................................
.
.................................................................................................................................................................................................................................................................................................................................
.........................................................................................................................................................................................................
.........................................................................................................................................................................................................
.........................................
......................................... ........................................
......................................... ........................................
......................................... ........................................
......................................... ........................................
......................................... ........................................
......................................... ........................................
......................................... ........................................
......................................... ........................................
......................................... ........................................
......................................... ........................................
......................................... ........................................
......................................... ........................................
......................................... ........................................
......................................... ........................................
......................................... ........................................
.............................................................................................................................................................................................................................................................................................................
............................................................................................................................................................................................................................................................................................................
......................................................................................
...................................................................................... ......................................................................................
...................................................................................... ......................................................................................
...................................................................................... ......................................................................................
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.............................................................................................................................................................................................................................................................................................................
............................................................................................................................................................................................................................................................................................................
Figure 16.1: Consolidation.
only at the top of the sample. The equations also apply to a sample of thickness 2h, drained both
at its top and bottom ends. The top half of such a sample drains to the upper boundary, and the
lower half drains to the lower boundary. The center line acts as an impermeable boundary. The
same problem occurs in case of a layer of clay between two very permeable layers, when the soil is
loaded, in a very short time and over a very large area, by a constant load. If the area is very large
it can be assumed that there will be no lateral deformations, and vertical flow only. The load can
be a surcharge by an additional sand layer, applied in a very short time.
96