Siêu thị PDFTải ngay đi em, trời tối mất

Thư viện tri thức trực tuyến

Kho tài liệu với 50,000+ tài liệu học thuật

© 2023 Siêu thị PDF - Kho tài liệu học thuật hàng đầu Việt Nam

Slides for the book
PREMIUM
Số trang
652
Kích thước
6.7 MB
Định dạng
PDF
Lượt xem
1929

Slides for the book

Nội dung xem thử

Mô tả chi tiết

Copyright © 2009, W. Ertel 1

Slides for the book

Introduction to Artificial Intelligence

Wolfgang Ertel

Springer-Verlag, 2011

www.hs-weingarten.de/~ertel/aibook

www.springer.com

last update: October 31, 2013

Contents

References 3

1 Introduction 13

2 Propositional Logic 39

3 First-order Predicate Logic 76

4 Limitations of Logic 141

5 Logic Programming with PROLOG 161

6 Search, Games and Problem Solving 190

7 Reasoning with Uncertainty 246

8 Machine Learning and Data Mining 348

9 Neural Networks 509

10 Reinforcement Learning 588

Bibliography

The RoboCup Soccer Simulator. http://sserver.sourceforge.net 3

Alpaydin, E.: Introduction to Machine Learning. MIT Press, 2004 8.8, 9.6

Anderson, J./Pellionisz, A./Rosenfeld, E.: Neurocomputing (vol. 2): direc￾tions for research. Cambridge, MA, USA: MIT Press, 1990 9.8

Anderson, J./Rosenfeld, E.: Neurocomputing: Foundations of Research. Cam￾bridge, MA: MIT Press, 1988, Sammlung von Originalarbeiten (document), 1,

9.8

Bartak, R.: Online Guide to Constraint Programming. http://kti.ms.

mff.cuni.cz/\protect\unhbox\voidb@x\penalty\@M\{}bartak/

Copyright © 2011, W. Ertel 4

constraints, 1998 5.8

Barto, A. G./Mahadevan, S.: Recent advances in hierarchical reinforcement

learning. Discrete Event Systems, Special issue on reinforcement learning, 13

2003, 41–77 10.1

Bellman, R.E.: Dynamic Programming. Princeton University Press, 1957 10

Berrondo, M.: Fallgruben fu¨r Kopffu¨ssler. Fischer Taschenbuch Nr. 8703,

1989 2.4

Bibel, W.: Deduktion: Automatisierung der Logik. Volume 6.2, Handbuch der

Informatik. Oldenbourg, 1992 3.5, 3.5, 3.9

Billard, A. et al.: Robot Programming by Demonstration. In Siciliano, B./

Khatib, O., editors: Handbook of Robotics. Springer, 2008, 1371–

1394 10.2

Bl¨asius, K.H./Burckert, H.-J.: ¨ Deduktionssysteme. Oldenbourg, 1992 3.5, 3.9

Copyright © 2009, W. Ertel 5

Bratko, I.: PROLOG: Programmierung fu¨r Ku¨nstliche Intelligenz. Addison￾Wesley, 1986 5, 5.8

Burges, C. J.: A Tutorial on Support Vector Machines for Pattern Recognition.

Data Min. Knowl. Discov. 2 1998, Nr. 2, 121–167 9.6

Chang, C. L./Lee, R. C.: Symbolic Logic and Mechanical Theorem Proving.

Orlando, Florida: Academic Press, 1973 3.9

Clocksin, W. F./Mellish, C. S.: Programming in Prolog. 4th edition. Berlin,

Heidelberg, New York: Springer, 1994 5, 5.8

Dassow, J.: Logik fu¨r Informatiker. Teubner Verlag, 2005 3.9

Diaz, D.: GNU PROLOG. Universit¨at Paris, 2004, Aufl. 1.7, fu¨r GNU Prolog

version 1.2.18, http://gnu-prolog.inria.fr 5.1, 5.8

D.J. Newman, S. Hettich, C.L. Blake/Merz, C.J.: UCI Repository of ma￾chine learning databases. http://www.ics.uci.edu/\protect\unhbox\

voidb@x\penalty\@M\{}mlearn/MLRepository.html, 1998 8.8

Copyright © 2011, W. Ertel 6

Duda, R.O./Hart, P.E.: Pattern Classification and Scene Analysis. Wiley, 1973,

Klassiker zur Bayes-Decision-Theorie (document)

Duda, R.O./Hart, P.E./Stork, D.G.: Pattern Classification. Wiley, 2001,

Neuauflage des Klassikers Duda/Hart 7.6, 8.6, 15, 8.8

Eder, E.: Relative Complexities of First Order Calculi. Vieweg Verlag, 1991 3.3

Ertel, W./Schumann, J./Suttner, Ch.: Learning Heuristics for a Theorem

Prover using Back Propagation. In Retti, J./Leidlmair, K., editors: 5.

O¨sterreichische Artificial-Intelligence-Tagung. Berlin, Heidelberg: Informatik￾Fachberichte 208, Springer-Verlag, 1989, 87–95 4.1, 4, 8

Fischer, B./Schumann, J.: SETHEO Goes Software Engineering: Application

of ATP to Software Reuse. In Conference on Automated Deduction (CADE

97). Springer, 1997, http://ase.arc.nasa.gov/people/schumann/

publications/papers/cade97-reuse.html, 65–68 3.8

Freuder, E.: In Pursuit of the Holy Grail. Constraints, 2 1997, Nr. 1, 57–61 5.7

Copyright © 2009, W. Ertel 7

G¨orz, G./Rollinger, C.-R./Schneeberger, J., editors: Handbuch der Ku¨n￾stlichen Intelligenz. Oldenbourg Verlag, 2003 3.9

Jensen, F.V.: Bayesian networks and decision graphs. Springer-Verlag, 2001 7.5,

7.5, 7.6, 8.4, 9

Kaelbling, L.P./Littman, M.L./Moore, A.P.: Reinforcement Learn￾ing: A Survey. Journal of Artificial Intelligence Research, 4 1996,

237–285, www-2.cs.cmu.edu/afs/cs/project/jair/pub/volume4/

kaelbling96a.pdf 10.2

Kalman, J.A.: Automated Reasoning with OTTER. Rinton Press, 2001,

www-unix.mcs.anl.gov/AR/otter/index.html 3.6

Lauer, M./Riedmiller, M.: Generalisation in Reinforcement Learning

and the Use of Obse rvation-Based Learning. In Kokai, Gabriella/

Zeidler, Jens, editors: Proceedings of the FGML Workshop 2002.

2002, http://amy.informatik.uos.de/riedmiller/publications/

lauer.riedml.fgml02.ps.gz, 100–107 2

Copyright © 2011, W. Ertel 8

Letz, R. et al.: SETHEO: A High-Performance Theorem Prover. Journal of Auto￾mated Reasoning, 1992, Nr. 8, 183–212, www4.informatik.tu-muenchen.

de/\protect\unhbox\voidb@x\penalty\@M\{}letz/setheo 3.6

Melancon, G./Dutour, I./Bousque-Melou, G.: Random Generation of Dags

for Graph Drawing. Dutch Research Center for Mathematical and Computer

Science (CWI), 2000 (INS-R0005). – Technical report, http://ftp.cwi.nl/

CWIreports/INS/INS-R0005.pdf 10

Minsky, M./Papert, S.: Perceptrons. MIT Press, Cambridge, MA, 1969 3

Mitchell, T.: Machine Learning. McGraw Hill, 1997, www-2.cs.cmu.edu/

\protect\unhbox\voidb@x\penalty\@M\{}tom/mlbook.html 2, 8, 8.8,

10.2

Nipkow, T./Paulson, L.C./Wenzel, M.: Isabelle/HOL — A Proof Assistant

for Higher-Order Logic. Volume 2283, LNCS. Springer, 2002, www.cl.cam.

ac.uk/Research/HVG/Isabelle 3.6, 4.1

Palm, G.: On Associative Memory. Biological Cybernetics, 36 1980, 19–31 2

Copyright © 2009, W. Ertel 9

Pearl, J.: Probabilistic Reasoning in Intelligent Systems. Networks of Plausible

Inference. Morgan Kaufmann, 1988 7.5, 7.6

Rich, E.: Artificial Intelligence. McGraw-Hill, 1983 1.1, 1

Ritter, H./Martinez, T./Schulten, K.: Neuronale Netze. Addison Wesley,

1991 9.8

Rojas, R.: Theorie der neuronalen Netze. Springer, 1993 9.8

Rumelhart, D./McClelland, J.: Parallel Distributed Processing. Volume 1,

MIT Press, 1986 (document), 3, 4, 5

Rumelhart, D.E./Hinton, G.E./R.J., Williams: Learning Internal Represen￾tations by Error Propagation. in Rumelhart/McClelland, 1986 3, 5

Schramm, M.: Indifferenz, Unabh¨angigkeit und maximale Entropie: Eine

wahrscheinlichkeitstheoretische Semantik fu¨r Nicht-Monotones Schließen.

Mu¨nchen: CS-Press, 1996, Dissertationen zur Informatik 4 5

Copyright © 2011, W. Ertel 10

Schulz, S.: E – A Brainiac Theorem Prover. Journal of AI Communications, 15

2002, Nr. 2/3, 111–126, www4.informatik.tu-muenchen.de/\protect\

unhbox\voidb@x\penalty\@M\{}schulz/WORK/eprover.html 3.6, 3.7

Schumann, J.: Automated Theorem Proving in Software Engineering. Springer

Verlag, 2001 3.8

Sch¨olkopf, S./Smola, A.: Learning with Kernels: Support Vector Machines,

Regularization, Optimization, and Beyond. MIT Press, 2002 9.6

Sejnowski, T.J./Rosenberg, C.R.: NETtalk: a parallel network that learns

to read aloud. The John Hopkins University Electrical Engineering and Com￾puter Science Technical Report, 1986 (JHU/EECS-86/01). – Technical report,

Wiederabdruck in Anderson/Rosenfeld S. 661-672 7

Siekmann, J./Benzmuller, Ch.: ¨ Omega: Computer Supported Mathemat￾ics. In KI 2004: Advances in Artificial Intelligence. Springer Verlag, 2004,

LNAI 3238, www.ags.uni-sb.de/\protect\unhbox\voidb@x\penalty\

@M\{}omega, 3–28 4.1

Copyright © 2009, W. Ertel 11

Stone, P./Sutton, R.S./Kuhlmann, G.: Reinforcement Learning for

RoboCup-Soccer Keepaway. Adaptive Behavior, 2005, To appear.,

www.cs.utexas.edu/\protect\unhbox\voidb@x\penalty\@M\

{}pstone/Papers/bib2html-links/AB05.pdf 3

Suttner, Ch./Ertel, W.: Automatic Acquisition of Search Guiding Heuristics. In

10th Int. Conf. on Automated Deduction. Springer-Verlag, LNAI 449, 1990,

470–484 4.1, 4, 9

Sutton, R./Barto, A.: Reinforcement Learning. MIT Press, 1998,

www.cs.ualberta.ca/\protect\unhbox\voidb@x\penalty\@M\

{}sutton/book/the-book.html 10.1, 1, 10.2

Turing, A.M.: Computing Machinery and Intelligence. Mind, 59 1950, 433–

460, Deutsche U¨bersetzung mit dem Titel Kann eine Maschine denken in

Zimmerli/Wolf 11

Whittaker, J.: Graphical models in applied multivariate statistics. Wiley, 1996 7.6

Copyright © 2011, W. Ertel 12

Wiedemann, U.: PhilLex, Lexikon der Philosophie. www.phillex.de/

paradoxa.htm 2

Wielemaker, J.: SWI-Prolog 5.4. Universit¨at Amsterdam, 2004, www.

swi-prolog.org 5.8

Witten, I./Frank, E.: Data Mining. Hanser Verlag Mu¨nchen, 2001, Von

den Autoren in Java entwickelte DataMining Programmbibliothek WEKA:

(www.cs.waikato.ac.nz/\protect\unhbox\voidb@x\penalty\@M\

{}ml/weka) 8, 16

Zdziarski, J.: Ending Spam. No Starch Press, 2005 12

Zell, A.: Simulation Neuronaler Netze. Addison Wesley, 1994, Im

Buch beschriebener Simulator SNNS, bzw. JNNS: www-ra.informatik.

uni-tuebingen.de/SNNS 6, 9.8

Zimmerli, W.C./Wolf, S., editors: Ku¨nstliche Intelligenz – Philosophische

Probleme. Stuttgart: Philipp Reclam, 1994 (document)

Chapter 1

Introduction

Copyright © 2011, W. Ertel 14

What is Artificial Intelligence (AI)

• What is intelligence?

• How can intelligence be measured?

• How does our brain work?

• Intelligent machine?

• Science fiction?

• Rebuild human mind?

• Philosophy, e.g. mind-body dualism?

Copyright © 2009, W. Ertel 15

John McCarthy (1955):

The aim of AI is to develop machines that behave as if they were intelligent.

Two simple Braitenberg-vehicles and their reaction to a light source.

Tải ngay đi em, còn do dự, trời tối mất!