Siêu thị PDFTải ngay đi em, trời tối mất

Thư viện tri thức trực tuyến

Kho tài liệu với 50,000+ tài liệu học thuật

© 2023 Siêu thị PDF - Kho tài liệu học thuật hàng đầu Việt Nam

rules of thumb for mechanical engineers pot
PREMIUM
Số trang
418
Kích thước
21.7 MB
Định dạng
PDF
Lượt xem
782

rules of thumb for mechanical engineers pot

Nội dung xem thử

Mô tả chi tiết

t

RULES OF THUM

FOR MECHANICAL liEH

A manual of quick, accurate solutions

to everyday mechanical engineering problems

J. Edward Pope, Editor

RULES OF THUMEI

FOR

MECHANICAL

ENGINEERS

Gulf Publishing Company

Houston, Texas

RULES OF THUMB FOR

MECHANICAL ENGINEERS

Copyright 8 1997 by Gulf Publishing Company,

Houston, Texas. All rights reserved. Printed in the

United States of America. This book, or parts thereof,

may not be reproduced in any form without permission

of the publisher.

109876543

Gulf Publishing Company

Book Division

P.O. Box 2608 0 Houston, Texas 77252-2608

Library of Congress Cataloging-in-Publication Data

Rules of thumb for mechanical engineers : a manual of

quick, accurate solutions to everyday mechanical

engineering problems / J. Edward Pope, editor ; in

collaboration with Andrew Brewington . . . [et al.].

Includes bibliographical references and index.

ISBN 0-88415-790-3 (acid-free paper)

1. Mechanical engineering-Handbooks, manuals,

etc. I. Pope, J. Edward, 1956- . 11. Brewington,

Andrew.

TJ151.R84 1996

p. cm.

62 14-20 96-35973

CIP

Printed on acid-free paper (=I.

iv

1: Fluids . 1

Fluid Properties ........................................................ Density. Specific Volume. Specific Weight.

Specific Gravity. and Pressure .................................... Surface Tension ..............................................................

Gas and Liquid Viscosity ................................................ Bulk Modulus ................................................................. Compressibility ............................................................... Units and Dimensions ..................................................... Fluid Statics .............................................................. Manometers and Pressure Measurements ....................... Hydraulic Pressure on Surfaces ...................................... Buoyancy ........................................................................ Basic Equations ........................................................ Continuity Eq~tion ........................................................ Euler’s Equation ............................................................. Bernoulli’s Equation .......................................................

Momentum Equation ...................................................... Moment-of-Momentum Equation ................................... Advanced Fluid Flow Concepts .............................. Dimensional Analysis and Similitude ............................ Nondimensional Parameters ........................................... Equivalent Diameter and Hydraulic Radius ................... Pipe Flow ...................................................................

Vapor Pressure ................................................................

Energy Equation .............................................................

2

2

2

2

3

3

3

3

4

4

4

5

5

5

5

6

6

6

6

7

7

7

8

8

Friction Factor and Darcy Equation ............................... Losses in Pipe Fittings and Valves .................................. Pipes in Series ................................................................. pipes in Parallel .............................................................. Open-Channel Flow ................................................. Frictionless Open-Channel Flow .................................... Laminar Open-Channel Flow ......................................... Turbulent Open-Channel Flow ....................................... Hydraulic Jump ............................................................... Fluid Measurements ................................................. Pressure and Velocity Measurements ............................. Flow Rate Measurement ................................................. Hot-wire and Thin-Film Anemometry ........................... Open-Channel Flow Measurements ............................... Viscosity Measurements .................................................

Unsteady Flow, Surge, and Water Hammer .................... Boundary Layer Concepts ..............................................

Oceanographic Flows .....................................................

Other Topi CS ..............................................................

Lift and Drag ...................................................................

9

10

10

10

11

11

12

12

12

13

13

14

14

15

15

16

16

16

16

17

Introduction......... ..................................................... 19

Conduction ................................................................ 19

Single Wall Conduction .................................................. 19

Composite Wall Conduction ........................................... 21

V

The Combined Heat Transfer Coefficient ....................... 22

Critical Radius of Insulation ........................................... 22

Convection ................................................................. 23

Dimensionless Numbers ................................................. 23

Correlations ..................................................................... 24

Typical Convection Coefficient Values .......................... 26

Radiation ................................................................... 26

Emissivity ....................................................................... 27

View Factors ................................................................... 27

Radiation Shields ............................................................ 29

Finite Element Analysis ........................................... 29

Boundary Conditions ...................................................... 29

2D Analysis .................................................................... 30

Evaluating Results .......................................................... 3 1

Shell-and-Tube Exchangers ............................................ 36

Shell Configurations ....................................................... 40

Miscellaneous Data ......................................................... 42

Heat Transfer ........................................................ 42

Flow Maps ...................................................................... 46

Transient Analysis .......................................................... 30

Heat Exchanger Classification ................................ 33

Types of Heat Exchangers .............................................. 33

Tube Arrangements and Baffles ..................................... 38

Flow Regimes and Pressure Drop in Two-Phase

Flow Regimes ................................................................. 42

Estimating Pressure Drop ............................................... 48

3: Thermodynamics. 51

Thermodynamic Essentials ...................................... Phases of a Pure Substance .............................................

Determining Properties ................................................... Types of Systems ............................................................ Types of Processes ..........................................................

Thermodynamic Properties .............................................

The Zeroth Law of Thermodynamics ............................. First Law of Thermodynamics ................................ Work ................................................................................ Heat ................................................................................. First Law of Thermodynamics for Closed Systems ....... First Law of Thermodynamics for Open Systems .......... Second Law of Thermodynamics ............................ Reversible Processes and Cycles ....................................

Useful Expressions ......................................................... Thermodynamic Temperature Scale ...............................

Thermodynamic Cycles ........................................... Basic Systems and Systems Integration ......................... Carnot Cycle ...................................................................

Reversed Rankine Cycle: A Vapor Refrigeration Cycle . Brayton Cycle: A Gas Turbine Cycle ............................. Otto Cycle: A Power Cycle ............................................

Rankine Cycle: A Vapor Power Cycle ............................

52

52

53

55

56

56

57

58

58

58

58

58

59

59

59

59

60

60

60

61

61

62

63

Diesel Cycle: Another Power Cycle ............................... Gas Power Cycles with Regeneration ............................. 63

64

4: Mechanical Seals. 66

Basic Mechanical Seal Components ....................... Sealing Points ............................................................ Mechanical Seal Classifications .............................. Basic Seal Designs ..................................................... Basic Seal Arrangements ......................................... Basic Design Principles ............................................ Materials of Construction ........................................ Desirable Design Features ....................................... Equipment Considerations ...................................... Calculating Seal Chamber Pressure .......................

Integral Pumping Features ...................................... Seal System Heat Balance ........................................

Seal Flush Plans ........................................................

Flow Rate Calculation .............................................. References .................................................................

5: Pumps and Compressors. 92

67

67

68

68

72

74

77

79

80

81

82

85

87

89

91

~~ ~

Pump Fundamentals and Design ............................ Pump and Head Terminology ......................................... 93

93

Pump Design Parameters and Formulas ......................... 93

Types of Pumps ............................................................... 94

Centrifugal Pumps .......................................................... 95

Net Positive Suction Head (NPSH) and Cavitation ........ 96

Pumping Hydrocarbons and Other Fluids ...................... 96

Recirculation ................................................................... 97

Pumping Power and Efficiency ...................................... 97

Specific Speed of Pumps ................................................ 97

Pump Similitude ............................................................. 98

Performance Curves ........................................................ 98

Series and Parallel Pumping ........................................... 99

Design Guidelines ........................................................... 100

Reciprocating Pumps ...................................................... 103

Compressors ............................................................. 110

Definitions ...................................................................... 110

Compressors ............................................................... 111

Compressors ............................................................... 114

Compression Horsepower Determination ....................... 117

Centrifugal Compressor Performance Calculations ....... 120

Estimate HP Required to Compress Natural Gas ........... 123

Estimate Engine Cooling Water Requirements .............. 124

Performance Calculations for Reciprocating

Estimating Suction and Discharge Volume Bottle

Sizes for Pulsation Control for Reciprocating

Generalized Compressibility Factor ............................... 119

vi

Estimate Fuel Requirements for Internal Combustion

Engines ....................................................................... 124

References ........... ............... " ........... ... .... .. .... 12A

6: Drivers. 125

Motors: Efficiency .................................................... 126

Motors: Starter Sizes ............................................... 127

Motors: Service Factor ............................................ 127

Motors: Useful Equations ........................................ 128

Motors: Relative Costs ............................................. 128

Motors: Overloading ................................................ 129

Steam Wbines: Steam Rate ................................... 129

Steam mrbines: Efficiency ...................................... 129

Gas Wbines: Fuel Rates ......................................... 130

Gas Engines: Fuel Rates .......................................... 132

Gas Expanders: Available Energy ............. 132

7: liearsJ33 .

Ratios and Nomenclature ........................................ 134

Spur and Helical Gear Design ................................. 134

Bevel Gear Design .................................................... 139

Cylindrical Worm Gear Design .............................. 141

Materials ................................................................... 142

Buying Gears and Gear Drives ............................... 144

References ................................................................. 144

sw of Gear Qpes .......................................... 143

8: Bearings. 145

Qpes of Bearings ..................................................... 146

Ball Bearings .................................................................. 146

Roller Bearings ............................................................... 147

Standardization ............................................................... 149

Materials ......................................................................... 151

ABMA Definitions ......................................................... 152

Fatigue Life ..................................................................... 153

Life Adjustment Factors ................................................. 154

Load and Speed Analysis ......................................... 156

Equivalent Loads ............................................................ 156

Contact Stresses .............................................................. 157

Preloading ....................................................................... 157

Special Loads .................................................................. 158

Effects of Speed .............................................................. 159

Lubrication ............................................................... 160

General ............................................................................ 160

Oils .................................................................................. 161

Greases ............................................................................ 161

Rating and Life ......................................................... 152

Lubricant Selection ......................................................... 162

Lubricating Methods ....................................................... 163

Relubncahon ................................................................... 164

Cleaning. Preservation. and Storage ............................... 165

Mounting ................................................................... 166

Shafting ........................................................................... 166

Housings ......................................................................... 169

Bearing Clearance ........................................................... 172

Seals ................................................................................ 174

Sleeve Bearings ......................................................... 175

References ................................................................. 177

..

9 Pipina and Pressure Vessels. 178

Process Plant Pipe .................................................... 179

Definitions and Sizing .................................................... 179

Pipe Specifications .......................................................... 187

Storing Pipe .................................................................... 188

Calculations to Use ......................................................... 189

Transportation Pipe Lines ....................................... 190

Steel Pipe Design ............................................................ 190

Gas Pipe Lines ............................................................ 190

Liquid pipe Lines ........................................................ 192

Pipe Line Condition Monitoring ............................. 195

Pig-based Monitoring Systems ....................................... 195

Coupons .......................................................................... 196

Manual Investigation ...................................................... 196

Cathodic Protection ........................................................ 197

Pressure Vessels ........................................................ 206

Stress Analysis ................................................................ 206

Failures in Pressure Vessels ............................................ 207

Loadings ......................................................................... 208

stress ............................................................................... 209

procedure 1 : General Vessel Formulas ........................... 213

Procedure 2: Stresses in Heads Due to Internal

Pressure ....................................................................... 215

Joint Efficiencies (ASME Code) .................................... 217

Properties of Heads ......................................................... 218

Volumes and Surface Areas of Vessel Sections .............. 220

Maximum Length of Unstiffened Shells ........................ 221

Useful Formulas for Vessels ........................................... 222

Material Selection Guide ................................................ 224

References ....................................................................... 225

10: Tribology. 226

Introduction .............................................................. 227

Contact Mechanics ................................................... 227

Two-dimensional (Line) Hertz Contact of Cylinders ..... 227

Three-dimensional (Point) Hertz Contact ....................... 229

Effect of Friction on Contact Stress ................................ 232

vii

Yield and Shakedown Criteria for Contacts ................... 232

Topography of Engineering Surfaces ........... 233

Contact of Rough Surfaces ............................................. 234

Life Factors ..................................................................... 234

Friction ...................................................................... 235

Wear ........................................................................... 235

Lubrication ............................................................... 236

References ................................................................. 237

Definition of Surface Roughness .................................... 233

11: Vibration. 238

Mechanical Testing ................................................... 284

Tensile Testing ................................................................ 284

Fatigue Testing ................................................................ 285

Hardness Testing ............................................................. 286

Creep and Stress Rupture Testing ................................... 287

Forming ..................................................................... 288

Casting ....................................................................... 289

Case Studies .............................................................. 290

Failure Analysis .............................................................. 290

Corrosion ........................................................................ 291

References ................................................................. 292

Vibration Definitions. Terminology. and

Solving the One Degree of Freedom System .......... 243

Solving Multiple Degree of Freedom Systems ....... 245

Vibration Measurements and Instrumentation ..... 246

Table A: Spring Stiffness ......................................... 250

Table B: Natural Frequencies of Simple Systems .. 251

Table C: Longitudinal and Torsional Vibration of

Uniform Beams ..................................................... 252

Table D: Bending (Transverse) Vibration of

Uniform Beams ..................................................... 253

Table E: Natural Frequencies of Multiple DOF

Systems .................................................................. 254

Table F: Planetary Gear Mesh Frequencies .......... 255

Table G: Rolling Element Bearing Frequencies

and Bearing Defect Frequencies ............. 256

Table H: General Vibration Diagnostic

Frequencies ........................................................... 257

References ................................................................. 258

Symbols ................................................................. 239

12: Materials. 259

Classes of Maferials .................................................. 260

Defrrutons ................................................................. 260

Metals ........................................................................ 262

Steels ............................................................................... 262

Tool Steels ...................................................................... 264

Cast Iron .......................................................................... 265

Stainless Steels ................................................................ 266

Superalloys ..................................................................... 268

Aluminum Alloys ........................................................... 269

Joining ............................................................................. 270

Coatings .......................................................................... 273

Corrosion ........................................................................ 276

Powder Metallurgy ......................................................... 279

PolJTme rs .................................................................... 281

cera^^................. ................................................... 284

..

13: Stress and Strain. 294 ~ ~~ ~~ ~~

Fundamentals of Stress and Strain ............. 295

Introduction ..................................................................... 295

Definitions4tress and Strain ....................................... 295

Equilibrium ..................................................................... 297

Compatibility .................................................................. 297

Saint-Venant’s Principle .................................................. 297

Superposition .................................................................. 298

Plane Stress/Plane Strain ................................................ 298

Thermal Stresses ............................................................. 298

Stress Concentrations ............................................... 299

Determination of Stress Concentration Factors .............. 300

Design Criteria for Structural Analysis ................. 305

General Guidelines for Effective Criteria ....................... 305

Strength Design Factors .................................................. 305

Beam Analysis ........................................................... 306

Limitations of General Beam Bending Equations .......... 307

Short Beams .................................................................... 307

Plastic Bending ............................................................... 307

Torsion ............................................................................ 308

Pressure Vessels ........................................................ 309

Thin-walled Cylinders .................................................... 309

Thick-walled Cylinders .................................................. 309

Press Fits Between Cylinders .................................. 310

Rotating Equipment ................................................. 310

Rotating Disks ................................................................ 310

Rotating Shafts ................................................................ 313

Flange Analysis ......................................................... 315

Flush Flanges .................................................................. 315

Undercut Flanges ............................................................ 316

Mechanical Fasteners ............................................... 316

Threaded Fasteners ......................................................... 317

Pins ................................................................................. 318

Rivets .............................................................................. 318

Welded and Brazed Joints ....................................... 319

Finite Element Analysis ........................................... 320

Creep Rupture .......................................................... 320

viii

Overview ......................................................................... 321

The Elements .................................................................. 321

Modeling Techniques ...................................................... 322

Advantages and Limitations of FEM .............................. 323

Centroids and Moments of Inertia for Common

Shapes .................................................................... 324

Beams: Shear. Moment, and &flection Formulas

for Common End Conditions .............................. 325

References ................................................................. 328

Strain Measurement ................................................. 362

The Electrical Resistance Strain Gauge .......................... 363

Electrical Resistance Strain Gauge Data Acquisition ..... 364

Liquid Level and Fluid Flow Measurement .......... 366

Liquid Level Measurement ............................................. 366

Fluid Flow Measurement ................................................ 368

References ................................................................. 370

16: Engineering Economics. 372

14: Fatigue. 329

Introduction .............................................................. 330

Design Approaches to Fatigue ................................. 331

Crack Initiation Analysis ......................................... 331

Residual Stresses ............................................................ 332

Notches ........................................................................... 332

Real World Loadings ...................................................... 335

Temperature Interpolation .............................................. 337

Material Scatter ............................................................... 338

Time Value of Money: Concepts and Formulas .... 373

Simple Interest vs . Compound Interest ........................... 373

Nominal Interest Rate vs . Effective Annual

Stages of Fatigue ....................................................... 330

Estimating Fatigue Properties ......................................... 338

Crack Propagation Analysis .................................... 338

Crack Propagation Calculations ..................................... 342

K-The Stress Intensity Factor ...................................... 339

Creep Crack Growth ....................................................... 344

Inspection Techniques .............................................. 345

Fluorescent Penetrant Inspection (PI) .......................... 345

Magnetic Particle Inspection (MPI) ................................ 345

Radiography .................................................................... 345

Ultrasonic Inspection ...................................................... 346

Eddy-current Inspection .................................................. 347

Evaluation of Failed Parts ............................................... 347

Nonmetallic Materials .............................................. 348

Fatigue T~~g .......................................................... 349

Liabrllty Issues .......................................................... 350

References ................................................................. 350

..

Inkrest Rate ................................................................ 374

in the Future ................................................................ 374

Future Value of a Single Investment ............................... 375

The Importance of Cash Flow Diagrams ........................ 375

Multiple or Irregular Cash Flows ............................... 375

Perpetuities ..................................................................... 376

Annuities, Loans, and Leases ......................................... 377

Growth Rates) ............................................................. 378

Cash Flow Problems ................................................... 379

Present Value of a Single Cash Flow To Be Received

Analyzing and Valuing InvestmenBRrojects with

Future Value of a Periodic Series of Investments ........... 377

Gradients (PayoutsPayments with Constant

Analyzing Complex Investments and

Decision and Evaluation Criteria for Investments

and Financial Projects .......................................... 380

Payback Method ............................................................. 380

Accounting Rate of Return (ROR) Method .................... 381

Internal Rate of Return (IRR) Method ............................ 382

Net Present Value (NPV) Method ................................... 383

Sensitivity Analysis ................................................... 384

Accounting Fundamentals ....................................... 389

References and Recommended Reading ................ 393

Decision 'he Analysis of Investments and

Financial Projects ................................................. 385

15: Instrumentation. 352 Appendix. 394

Introduction .............................................................. 353

Temperature Measurement ..................................... 354 Conversion Factors .................................................. 395

Fluid Temperature Measurement 354 SysternS of Basic Units 399

Surface Temperature Measurement ................................ 358 Decimal Multiples and Fractions of SI units ......... 399

Pressure Measurement ............................................. 359

Total Pressure Measurement 360

.................................... ..............................................

Common Temperature Sensors ....................................... 358

StaticKavity Pressure Measurement .............................. 361

Temperature Conversion Equations ............ 399

Index, 400 ...........................................

ix

Bhabani P . Mohanty. Ph.D., Development Engineer. Allison Engine Company

Fluid Prope ............................................................ Density. Specific Volume. Specific Weight.

Specific Gravity. and Pressure ...................................... Surface Tension ................................................................ Vapor Pressure .................................................................. Gas and Liquid Viscosity ................................................. Bulk Modulus ................................................................... Compressibility ................................................................ Units and Dimensions ......................................................

Fluid StSlti. ................................................................ Manometers and Pressure Measurements ........................ Hydraulic Pressure on Surfaces ........................................ Buoyancy ..........................................................................

Basic Equations .......................................................... Continuity Equation ......................................................... Euler’s Equation ...............................................................

Energy Equation ............................................................... Momentum Equation ........................................................ Moment-of-Momentum Equation ....................................

Bernoulli’s Equation .........................................................

Advanced Fluid Flow Concepts ................................ Dimensional Analysis and Similitude ..............................

2

2

2

2

3

3

3

3

4

4

4

5

5

5

5

6

6

6

6

7

7

Nondimensional Parameters ............................................. 7

Equivalent Diameter and Hydraulic Radius ..................... 8

9

Pipe Flow .................................................................... 8

Friction Factor and Darcy Equation ................................. Losses in Pipe Fittings and Valves ................................... 10

Pipes in Series .................................................................. 10

Open-Channel Flow ................................................... 11

Frictionless Open-Channel Flow ...................................... 11

Laminar Open-Channel Flow ........................................... 12

Turbulent Open-Channel Flow ......................................... 12

Hydraulic Jump ................................................................ 12

Fluid Measurements .................................................. 13

Pressure and Velocity Measurements ............................... 13

Flow Rate Measurement ................................................... 14

Hot-wire and Thin-Film Anemometry ............................ 14

Open-Channel Flow Measurements ................................. 15

Viscosity Measurements ................................................... 15

Other Topi ................................................................ 16

Unsteady Flow. Surge. and Water Hammer ..................... 16

Boundary Layer Concepts ................................................ 16

Lift and Drag .................................................................... 16

Oceanographic Flows ....................................................... 17

Pipes in Parallel ................................................................ 10

1

2 Rules of Thumb for Mechanical Engineers

FLUID PROPERTIES

Afluid is defined as a “substance that deforms contin￾uously when subjected to a shear stress” and is divided into

two categories: ideal and real. A fluid that has zero vis￾cosity, is incompressible, and has uniform velocity distri￾bution is called an idealfluid. Realfluids are called either

Newtonian or non-Newtonian. A Newtonian fluid has a lin￾ear relationship between the applied shear stress and the

resulting rate of deformation; but in a non-Newtonian

fluid, the relationship is nonlinear. Gases and thin liquids

are Newtonian, whereas thick, long-chained hydrocar￾bons are non-Newtonian.

Density, Specific Volume, Specific Weight, Specific Gravity, and Pressure

The density p is defined as mass per unit volume. In in￾consistent systems it is defined as lbdcft, and in consis￾tent systems it is defined as slugs/cft. The density of a gas

can be found from the ideul gas law:

The specific gravity s of a liquid is the ratio of its

weight to the weight of an equal volume of water at stan￾dard temperature and pressure. The s of petroleum

products can be found from hydrometer readings using

MI (American Petroleum Institute) scale.

p = p/RT (1)

where p is the absolute pressure, R is the gas constant, and The fluid pressure at a point is the ratio of normal

T is the absolute temperature.

The density of a liquid is usually given as follows:

force to area as the area approaches a small value. Its

unit is usually lbs/sq. in. (psi). It is also often measured

as the equivalent height h of a fluid column, through

the relation:

The specific volume v, is the reciprocal of density:

The specific weight y is the weight per unit volume:

v, = l/p

Y= Pg

P=Yh

Surface Tension

Vapor Pressure

Molecules that escape a liquid surface cause the evapo￾ration process. The pressure exerted at the surface by these

free molecules is called the vaporpressure. Because this is

caused by the molecular activity which is a function of the

temperature, the vapor pressure of a liquid also is a function

of the temperature and increases with it. Boiling occurs

when the pressure above the liquid surface equals (or is less

than) the vapor pressure of the liquid. This phenomenon,

which may sometimes occur in a fluid system network,

causing the fluid to locally vaporize, is called cavitation.

Fluids 3

Gas and liquid Viscosity

Viscosi~ is the property of a fluid that measures its re

sistance to flow. Cohesion is the main cause of this resis￾tance. Because cohesion drops with temperature, so does

viscosity. The coefficient of viscosity is the proportional￾ity constant in Newton’s law of viscosity that states that the

shear stress z in the fluid is directly proportional to the ve￾locity gradient, as represented below:

z=p￾dY

The p above is often called the absolute or dynamic

viscosity. There is another form of the viscosity coefficient

called the kinematic viscosity v, that is, the ratio of viscosity

to mass density:

V = cl/p

Remember that in U.S. customary units, unit of mass den￾du (2) sity p is slugs per cubic foot.

Bulk Modulus

A liquid‘s compressibility is measured in terms of its bulk

modulus of elasticity. Compressibility is the percentage

change in unit volume per unit change in pressure:

The bulk modulus of elasticity K is its reciprocal:

K= 1/C

6VlV C=- K is expressed in units of pressure.

sp

Compressibility

Compressibility of liquids is defined above. However, for

a gas, the application of pressure can have a much greater

effect on the gas volume. The general relationship is gov￾erned by the pe$ect gas law:

pv, = RT

Where P is the d~olute Pressure, V, is the Specific Volume,

R is the gas constant, and T is the absolute temperature.

Units and Dimensions

One must always use a consistent set of units. Primary

units are mass, length, time, and temperature. A unit system

is called consistent when unit force causes a unit mass to

achieve unit acceleration. In the U.S. system, this system is

represented by the (pound) force, the (slug) mass, the (foot)

length, and the (second) time. The slug mass is defined as

the mass that accelerates to one ft/& when subjected to one

pound force (lbf). Newton’s second law, F = ma, establish￾es this consistency between force and mass units. If the

mass is ever referred to as being in lbm (inconsistent sys￾tem), one must first convert it to slugs by dividing it by

32.174 before using it in any consistent equation.

Because of the confusion between weight (lbf) and mass

(lbm) units in the U.S. inconsistent system, there is also a

similar confusion between density and specific weight

units. It is, therefore, always better to resort to a consistent

system for engineering calculations.

4 Rules of Thumb for Mechanical Engineers

FLUID STATICS

Fluid statics is the branch of fluid mechanics that deals

with cases in which there is no relative motion between fluid

elements. In other words, the fluid may either be in rest or

at constant velocity, but certainly not accelerating. Since

there is no relative motion between fluid layers, there are

no shear stresses in the fluid under static equilibrium.

Hence, all bodies in fluid statics have only normal forces

on their surfaces.

Manometers and Pressure Measurements

Pressure is the same in all directions at a point in a sta￾tic fluid. However, if the fluid is in motion, pressure is de￾fined as the average of three mutually perpendicular nor￾mal compressive stresses at a point:

P = (Px + Py + PJ3

Pressure is measured either from the zero absolute pres￾sure or from standard atmospheric pressure. If the reference

point is absolute pressure. the pressure is called the absohte

pressure, whereas if the reference point is standard atmos￾pheric (14.7 psi), it is called the gage pressure. A barom￾eter is used to get the absolute pressure. One can make a

simple barometer by filling a tube with mercury and in￾verting it into an open container filled with mercury. The

mercury column in the tube will now be supported only by

the atmospheric pressure applied to the exposed mercury

surface in the container. The equilibrium equation may be

written as:

pa = 0.491(144)h

where h is the height of mercury column in inches, and 0.491

is the density of mercury in pounds per cubic inch. In the

above expression, we neglected the vapor pressure for

mercury. But if we use any other fluid instead of mercury,

the vapor pressure may be signifcant. The equilibrium

equation may then be:

Pa = [(O-O361)(s)(h) + pvl(144)

where 0.0361 is the water density in pounds per cubic

inch, and s is the specific gravity of the fluid. The consis￾tent equation for variation of pressure is

P=Yh

where p is in lb/ft2, y is the specific weight of the fluid in

lb/ft3, and h is infeet. The above equation is the same as p

= ywsh, where yw is the specific weight of water (62.4

lb/ft3) and s is the specific gravity of the fluid.

Manometers are devices used to determine differential

pressure. A simple U-tube manometer (with fluid of spe￾cific weight y) connected to two pressure points will have

a differential column of height h. The differential pressure

will then be Ap = (p2 - pl) = 'yh. Corrections must be

made if high-density fluids are present above the manome￾ter fluid.

Hydraulic Pressure on Surfaces

(3)

For a horizontal area subjected to static fluid pressure,

the resultant force passes through the centroid of the area.

1

2 pavg =-(h, +h,)sine

If the Plane is hAkd at an angle 0, then the local Pressure

Will VW linearly with the depth- The average Pressure

occurs at the average depth:

However, the center of pressure will not be at average depth

but at the centroid of the triangular or trapezoidal pressure

distribution, which is also known as the pressure prism.

Tải ngay đi em, còn do dự, trời tối mất!