Thư viện tri thức trực tuyến
Kho tài liệu với 50,000+ tài liệu học thuật
© 2023 Siêu thị PDF - Kho tài liệu học thuật hàng đầu Việt Nam

Reliability engineering : Probabilistic models and maintenance methods
Nội dung xem thử
Mô tả chi tiết
RELIABILITY
ENGINEERING
Probabilistic Models and
Maintenance Methods
Second Edition
RELIABILITY
ENGINEERING
JOEL A. NACHLAS
Probabilistic Models and
Maintenance Methods
Second Edition
Boca Raton London New York
CRC Press is an imprint of the
Taylor & Francis Group, an informa business
CRC Press
Taylor & Francis Group
6000 Broken Sound Parkway NW, Suite 300
Boca Raton, FL 33487-2742
© 2017 by Taylor & Francis Group, LLC
CRC Press is an imprint of Taylor & Francis Group, an Informa business
No claim to original U.S. Government works
Printed on acid-free paper
Version Date: 20161019
International Standard Book Number-13: 978-1-4987-5247-3 (Pack - Book and Ebook)
This book contains information obtained from authentic and highly regarded sources. Reasonable
efforts have been made to publish reliable data and information, but the author and publisher cannot
assume responsibility for the validity of all materials or the consequences of their use. The authors and
publishers have attempted to trace the copyright holders of all material reproduced in this publication
and apologize to copyright holders if permission to publish in this form has not been obtained. If any
copyright material has not been acknowledged please write and let us know so we may rectify in any
future reprint.
Except as permitted under U.S. Copyright Law, no part of this book may be reprinted, reproduced,
transmitted, or utilized in any form by any electronic, mechanical, or other means, now known or
hereafter invented, including photocopying, microfilming, and recording, or in any information storage or retrieval system, without written permission from the publishers.
For permission to photocopy or use material electronically from this work, please access www.copyright.com (http://www.copyright.com/) or contact the Copyright Clearance Center, Inc. (CCC), 222
Rosewood Drive, Danvers, MA 01923, 978-750-8400. CCC is a not-for-profit organization that provides licenses and registration for a variety of users. For organizations that have been granted a photocopy license by the CCC, a separate system of payment has been arranged.
Trademark Notice: Product or corporate names may be trademarks or registered trademarks, and are
used only for identification and explanation without intent to infringe.
Visit the Taylor & Francis Web site at
http://www.taylorandfrancis.com
and the CRC Press Web site at
http://www.crcpress.com
Dedicated to the memory of Betty Nachlas
vii
Contents
Preface................................................................................................................... xiii
Author.....................................................................................................................xv
1 Introduction.....................................................................................................1
2 System Structures...........................................................................................5
2.1 Status Functions ....................................................................................5
2.2 System Structures and Status Functions ...........................................7
2.2.1 Series Systems ..........................................................................7
2.2.2 Parallel System .........................................................................8
2.2.3 k-out-of-n Systems .................................................................. 10
2.2.4 Equivalent Structures............................................................12
2.3 Modules of Systems ............................................................................ 17
2.4 Multistate Components and Systems............................................... 18
Exercises .......................................................................................................... 19
3 Reliability of System Structures ...............................................................23
3.1 Probability Elements...........................................................................23
3.2 Reliability of System Structures........................................................ 24
3.2.1 Series Systems ........................................................................ 24
3.2.2 Parallel Systems......................................................................25
3.2.3 k-out-of-n Systems ..................................................................25
3.2.4 Equivalent Structures............................................................26
3.3 Modules ................................................................................................ 31
3.4 Reliability Importance........................................................................ 32
3.5 Reliability Allocation..........................................................................35
3.6 Conclusion............................................................................................36
Exercises .......................................................................................................... 37
4 Reliability over Time ...................................................................................39
4.1 Reliability Measures ...........................................................................39
4.2 Life Distributions ................................................................................44
4.2.1 Exponential Distribution ......................................................45
4.2.2 Weibull Distribution..............................................................46
4.2.3 Normal Distribution..............................................................49
4.2.4 Lognormal Distribution........................................................ 51
4.2.5 Gamma Distribution ............................................................. 52
4.2.6 Other Distributions ............................................................... 52
4.3 System-Level Models..........................................................................54
Exercises ..........................................................................................................58
viii Contents
5 Failure Processes........................................................................................... 61
5.1 Mechanical Failure Models ............................................................... 62
5.1.1 Stress–Strength Interference ................................................ 62
5.1.2 Shock and Cumulative Damage ..........................................64
5.2 Electronic Failure Models ..................................................................71
5.2.1 Arrhenius Model....................................................................71
5.2.2 Eyring Model..........................................................................72
5.2.3 Power Law Model ..................................................................72
5.2.4 Defect Model...........................................................................72
5.3 Other Failure Models..........................................................................73
5.3.1 Diffusion Process Model.......................................................73
5.3.2 Proportional Hazards ...........................................................78
5.3.3 Competing Risks....................................................................80
Exercises ..........................................................................................................83
6 Age Acceleration...........................................................................................85
6.1 Age Acceleration for Electronic Devices..........................................87
6.2 Age Acceleration for Mechanical Devices.......................................89
6.3 Step Stress Strategies ..........................................................................92
6.4 Concluding Comment........................................................................93
Exercises ..........................................................................................................93
7 Nonparametric Statistical Methods..........................................................95
7.1 Data Set Notation and Censoring.....................................................96
7.2 Estimates Based on Order Statistics .................................................98
7.3 Estimates and Confidence Intervals.................................................99
7.4 Kaplan–Meier Estimates .................................................................. 102
7.4.1 Continuous Monitoring of Test Unit Status ..................... 102
7.4.2 Periodic Monitoring of Test Unit Status ........................... 105
7.5 Tolerance Bounds .............................................................................. 107
7.6 TTT Transforms................................................................................. 109
7.6.1 Theoretical Construction.................................................... 109
7.6.2 Application to Complete Data Sets.................................... 113
7.6.3 Application to Censored Data Sets.................................... 118
7.7 Nelson Cumulative Hazard Estimation Method .........................122
Exercises ........................................................................................................ 124
8 Parametric Statistical Methods................................................................ 129
8.1 Graphical Methods ........................................................................... 129
8.2 Method of Moments ......................................................................... 135
8.2.1 Estimation Expressions....................................................... 136
8.2.2 Confidence Intervals for the Estimates............................. 139
8.3 Method of Maximum Likelihood................................................... 143
8.4 Maximum Likelihood Method with Data Censoring ................. 159
Contents ix
8.5 Special Topics..................................................................................... 161
8.5.1 Method of Moments with Censored Data........................ 161
8.5.2 Data Analysis under Step Stress Testing.......................... 164
Exercises ........................................................................................................ 167
9 Repairable Systems I: Renewal and Instantaneous Repair............... 173
9.1 Renewal Processes ............................................................................ 174
9.2 Classification of Distributions and Bounds on Renewal
Measures ............................................................................................ 181
9.3 Residual Life Distribution ............................................................... 186
9.4 Conclusion.......................................................................................... 189
Exercises ........................................................................................................ 190
10 Repairable Systems II: Nonrenewal and Instantaneous Repair....... 193
10.1 Minimal Repair Models ................................................................... 194
10.2 Imperfect Repair Models .................................................................200
10.3 Equivalent Age Models ....................................................................203
10.3.1 Kijima Models ......................................................................203
10.3.2 Quasi-Renewal Process....................................................... 210
10.4 Conclusion.......................................................................................... 214
Exercises ........................................................................................................ 214
11 Availability Analysis ................................................................................. 217
11.1 Availability Measures.......................................................................220
11.2 Example Computations....................................................................223
11.2.1 Exponential Case .................................................................223
11.2.2 Numerical Case....................................................................225
11.3 System-Level Availability ................................................................227
11.4 Nonrenewal Cases ............................................................................ 232
11.4.1 Availability under Imperfect Repair.................................233
11.4.2 Availability Analysis for the Quasi-Renewal Model......235
11.5 Markov Models ................................................................................. 239
Exercises ........................................................................................................ 245
12 Preventive Maintenance............................................................................ 247
12.1 Replacement Policies......................................................................... 248
12.1.1 Elementary Models.............................................................. 248
12.1.2 Availability Model for Age Replacement .........................253
12.1.3 Availability Model for Block Replacement.......................255
12.1.4 Availability Model for Opportunistic Age
Replacement................................................................... 257
12.1.4.1 Failure Model........................................................ 262
12.1.4.2 Opportunistic Failure Replacement Policy ......265
x Contents
12.1.4.3 Partial Opportunistic Age Replacement
Policy................................................................ 268
12.1.4.4 Full Opportunistic Age Replacement Policy.... 271
12.1.4.5 Analysis of the Opportunistic Replacement
Models.................................................................... 271
12.2 Nonrenewal Models ......................................................................... 274
12.2.1 Imperfect PM Models.......................................................... 275
12.2.2 Models Based on the Quasi-Renewal Process .................277
12.2.3 Models Based on the Kijima Model .................................. 281
12.3 Conclusion..........................................................................................283
Exercises ........................................................................................................284
13 Predictive Maintenance............................................................................. 287
13.1 System Deterioration ........................................................................288
13.2 Inspection Scheduling......................................................................289
13.3 More Complete Policy Analysis......................................................290
13.4 Models and Analysis Based on Continuous Process
Monitoring ......................................................................................... 294
13.4.1 Observable Degradation Processes ................................... 294
13.4.2 Unobservable Degradation Processes............................... 297
13.4.2.1 Time Series Methods ........................................... 298
13.4.2.2 Conditional Probability Methods ......................300
13.5 Conclusion..........................................................................................304
Exercises ........................................................................................................305
14 Special Topics ..............................................................................................307
14.1 Statistical Analysis of Repairable System Data.............................307
14.1.1 Data from a Single System..................................................307
14.1.2 Data from Multiple Identical Systems .............................. 310
14.2 Warranties .......................................................................................... 314
14.2.1 Full Replacement Warranties ............................................. 315
14.2.2 Pro Rata Warranties............................................................. 317
14.3 Reliability Growth ............................................................................ 319
14.4 Dependent Components .................................................................. 323
14.5 Bivariate Reliability........................................................................... 325
14.5.1 Collapsible Models............................................................... 326
14.5.2 Bivariate Models................................................................... 327
14.5.2.1 Stochastic Functions ............................................ 327
14.5.2.2 Correlation Models ..............................................330
14.5.2.3 Probability Analysis............................................. 331
14.5.2.4 Failure and Renewal Models ..............................335
Exercises ........................................................................................................341
Contents xi
Appendix A: Numerical Approximations ....................................................343
Appendix B: Numerical Evaluation of the Weibull Renewal
Functions.........................................................................................................347
Appendix C: Laplace Transform for the Key Renewal Theorem.............353
Appendix D: Probability Tables .....................................................................355
References ...........................................................................................................359
Index .....................................................................................................................365
xiii
Preface
The motivation for the preparation of a second edition was my wish to expand
the treatment of several topics while maintaining an integrated introductory
resource for the study of reliability evaluation and maintenance planning.
The focus across all of the topics treated is the use of analytical methods to
support the design of dependable and efficient equipment and the planning
for the servicing of that equipment. The orientation of the topical development is that probability models provide an effective vehicle for portraying
and evaluating the variability that is inherent in the performance and longevity of equipment.
The book is intended to support either an introductory graduate course
in reliability theory and preventive maintenance planning or a sequence of
courses that address these topics. A fairly comprehensive coverage of the
basic models and of various methods of analysis is provided. An understanding of the topics discussed should permit the reader to comprehend
the literature describing new and advanced models and methods.
Notwithstanding the emphasis upon initial study, the text should also
serve well as a resource for practicing engineers. Engineers who are involved
in the design process should find a coherent explanation of the reliability
and maintenance issues that will influence the success of the devices they
create. Similarly, engineers responsible for the analysis and verification of
product reliability or for the planning of maintenance support of fielded
equipment should find the material presented here to be relevant and easy
to access and use.
In preparing this second edition, the treatment of statistical methods for
evaluating reliability has been expanded substantially. Several methods for
constructing confidence intervals as part of the parametric estimation effort
are described and methods for treating data derived from operating repairable devices have also been added. In addition, the analysis of nonstationary models of repairable equipment maintenance has been updated and
expanded. These expansions along with numerous other minor improvements to the text should make this book an even more useful resource for
both students and practitioners.
The background required of the reader is a sound understanding of probability. This subsumes capability with calculus. More specifically, the reader
should have an understanding of distribution theory, Laplace transforms,
convolutions, stochastic processes, and Markov processes. It is also worth
mentioning that the use of the methods discussed in this book often involves
substantial computational effort, so facility with numerical methods and
access to efficient mathematical software is desirable.
xiv Preface
One caveat concerning the coverage here is that the treatment is strictly
limited to hardware. Reliability and maintenance models have been developed for applications to software, humans, and services systems. No criticism of those efforts is intended but the focus here is simply hardware.
The organization of the text is reasonably straightforward. The elementary concepts of reliability theory are presented sequentially in Chapters 1
through 6. Following this, the commonly used statistical methods for evaluating component reliability are described in Chapters 7 and 8. Chapters
9 through 13 treat repairable systems and maintenance planning models.
Here again the presentation is sequential in that simple failure models precede those that include preventive actions and the renewal cases are treated
before the more realistic nonrenewal cases. In the final chapter, four interesting special topics, including warranties, are discussed. It is worth noting
that four appendices that address aspects of numerical computation are provided. These should be quite useful to the reader.
Naturally, many people have contributed to the preparation of this text.
The principal factor in the completion of this book was the support and
encouragement of my wife Beverley. An important practical component of
my success was the support of Virginia Tech, especially during sabbaticals
when progress with writing is so much easier.
I acknowledge the significant computational capability provided to me by
the Mathematica software. Many of the analyses included in this text would
have been much more taxing or even impossible without the strength and
efficiency the Wolfram software provides.
I also wish to extend my thanks directly to three of my students, each of
whom contributed to my efforts. Edvin Beqari stimulated my increased interest in and analysis of the diffusion models of degradation. He also directed
much of my analysis of that topic. Elliott Mitchell-Colgan helped to expand
the sets of exercises included at the end of the chapters. Paul D’Agostino
invested very many hours in verifying a majority of the complicated numerical analyses used for examples or for exercise solutions.
I express my profound gratitude to all of my graduate students who have
taught me so much about these topics over the years. May we all continue to
learn and grow and to enjoy the study of this important subject.