Thư viện tri thức trực tuyến
Kho tài liệu với 50,000+ tài liệu học thuật
© 2023 Siêu thị PDF - Kho tài liệu học thuật hàng đầu Việt Nam

Prandtl-essentials of fluid mechanics
Nội dung xem thử
Mô tả chi tiết
Applied Mathematical Sciences
Editors
S.S. Antman J.E. Marsden L. Sirovich
Advisors
J.K. Hale P. Holmes J. Keener
J. Keller B.J. Matkowsky A. Mielke
C.S. Peskin K.R. Sreenivasan
Volume 158
For further volumes:
http://www.springer.com/series/34
Herbert Oertel
Editor
Prandtl–Essentials of Fluid
Mechanics
Third Edition
With Contributions by
Translated by Katherine Asfaw
With 536 Illustrations
K.R. Sreenivasan, J. Warnatz
P. Erhard, D. Etling, U. Müller, U. Riedel,
Dir. MPI für Strömungsforschung, † 1953
© Springer Science+Business Media, LLC 2010
subject to proprietary rights.
Printed on acid-free paper
permission of the publisher (Springer Science+Business Media, LLC, 233 Spring Street, New York,
The use in this publication of trade names, trademarks, service marks, and similar terms, even if they
NY 10013, USA), except for brief excerpts in connection with reviews or scholarly analysis. Use in
software, or by similar or dissimilar methodology now known or hereafter developed is forbidden.
are not identified as such, is not to be taken as an expression of opinion as to whether or not they are
Springer is part of Springer Science+Business Media (www.springer.com)
Springer New York Dordrecht Heidelberg London
connection with any form of information storage and retrieval, electronic adaptation, computer
Library of Congress Control Number: 2009938172
ISSN 0066-5452
ISBN 978-1-4419-1563-4 e-ISBN 978-1-4419-1564-1
Herbert Oertel
Kaiserstr. 12
Germany
Institute for FFluid Mechanics
University of Karlsruhe
D-76131 Karlsruhe
University of Göttingen,
Editors:
S.S. Antman
and
Institute for Physical Science
and Technology
University of Maryland
College Park
USA
J.E. Marsden
Control and Dynamical
Systems, 107-81
California Institute
Pasadena, CA 91125
USA
L. Sirovich
Mathematics
Biomathematical Sciences
New York, NY 10029-6574
USA
Ludwig Prandtl
Laboratory of Applied
MD 20742-4015
Department of Mathematics
of Technology
Department of
DOI 10.1007/978-1-4419-1564-1
Mount Sinai School of Medicine
Originally published in the German language by Vieweg+Teubner, 65189 Wiesbaden, Germany
© Vieweg+Teubner |GWV Fachverlage GmbH, Wiesbaden 2008
th revised and enlarged edition”
All rights reserved. This work may not be translated or copied in whole or in part without the written
as “Oertel: Prandtl – Führer durch die Strömungslehre. 12
Preface
Ludwig Prandtl, with his fundamental contributions to hydrodynamics, aerodynamics, and gas dynamics, greatly influenced the development of fluid mechanics as a whole, and it was his pioneering research in the first half of the
last century that founded modern fluid mechanics. His book F¨uhrer durch
die Str¨omungslehre, which appeared in 1942, originated from previous publications in 1913, Lehre von der Fl¨ussigkeit und Gasbewegung, and 1931, Abriß
der Str¨omungslehre. The title F¨uhrer durch die Str¨omungslehre, or Essentials
of Fluid Mechanics, is an indication of Prandtl’s intentions to guide the reader
on a carefully thought-out path through the different areas of fluid mechanics. On his way, the author advances intuitively to the core of the physical
problem, without extensive mathematical derivations. The description of the
fundamental physical phenomena and concepts of fluid mechanics that are
needed to derive the simplified models has priority over a formal treatment
of the methods. This is in keeping with the spirit of Prandtl’s research work.
The first edition of Prandtl’s F¨uhrer durch die Str¨omungslehre was the
only book on fluid mechanics of its time and, even today, counts as one of
the most important books in this area. After Prandtl’s death, his students
Klaus Oswatitsch and Karl Wieghardt undertook to continue his work, and to
add new findings in fluid mechanics in the same clear manner of presentation.
When the ninth edition went out of print and a new edition was desired
by the publishers, we were glad to take on the task. The first four chapters of
this book keep to the path marked out by Prandtl in the first edition, in 1942.
The original historical text has been linguistically revised, and leads, after the
Introduction, to chapters on Properties of Liquids and Gases, Kinematics of
Flow, and Dynamics of Fluid Flow. These chapters are taught to science and
engineering students in introductory courses on fluid mechanics even today.
We have retained much of Prandtl’s original material in these chapters, but
added a section on the Topology of a Flow in Chapter 3 on Flows of NonNewtonian Media and Aerodynamics in Chapter 4. Chapter 5 on Fundamental
Equations of Fluid Mechanics enlarges the material in the original, and forms
the basis for the treatment of different branches of fluid mechanics that appear
in subsequent chapters.
The major difference from previous editions lies in the treatment of additional topics of fluid mechanics. The field of fluid mechanics is continuously
v
Preface
growing, and has now become so extensive that a selection had to be made.
I am greatly indebted to my colleagues K.R. Sreenivasan, U. M¨uller, J. Warnatz, U. Riedel, D. Etling, and P. Erhard, who revised individual chapters in
their own research areas, keeping Prandtl’s purpose in mind and presenting
the latest developments of the last seventy years in Chapters 6 to 12. Some of
these chapters can be found in some form in Prandtl’s book, but have undergone substantial revisions; others are entirely new. The original chapters on
Wing Aerodynamics, Heat Transfer, Stratified Flows, Turbulent Flows, Multiphase Flows, Flows in the Atmosphere and the Ocean, and Turbomachinery
have been revised, while the chapters on Instabilities and Turbulent Flows,
Flows with Chemical Reactions, Microflows and Biofluid Mechanics are new.
References to the literature in the individual chapters have intentionally been
kept to those few necessary for comprehension and completion. The extensive
historical citations may be found by referring to previous editions.
Essentials of Fluid Mechanics is targeted to science and engineering students who, having had some basic exposure to fluid mechanics, wish to attain
an overview of the different branches of fluid mechanics. The presentation
postpones the use of vectors and eschews the use integral theorems in order
to preserve the accessibility to this audience. For more general and compact
mathematical derivations we refer to the references. In order to give students
the possibility of checking their learning of the subject matter, Chapters 2
to 5 are supplemented with problems. The book will also give the expert in
research or industry valuable stimulation in the treatment and solution of
fluid-mechanical problems.
We hope that we have been able, with the treatment of the different
branches of fluid mechanics, to carry on the work of Ludwig Prandtl as he
would have wished. Chapters 1–5, 7, and 12 were written by H. Oertel, Chapter 6 by K.R. Sreenivasan and H. Oertel, Chapter 8 by U. M¨uller, Chapter
9 by J. Warnatz and U. Riedel, Chapter 10 by D. Etling, and Chapter 11 by
P. Erhard. Thanks are due to those colleagues whose numerous suggestions
have been included in the text.
I thank Katherine Aswaf for the translation and typesetting of the English
manuscript and K. Fritsch-Kirchner for the completion of the text files. The
extremely fruitful collaboration with Springer-Verlag also merits particular
praise.
Karlsruhe, July 2009 Herbert Oertel
vi
Preface
1. Introduction 1
2. Properties of Liquids and Gases 15
2.1 Properties of Liquids . . . . . . . . . . . . . . . . . . . . . . . 15
2.2 State of Stress . . . . . . . . . . . . . . . . . . . . . . . . . . 16
2.3 Liquid Pressure . . . . . . . . . . . . . . . . . . . . . . . . . . 18
2.4 Properties of Gases . . . . . . . . . . . . . . . . . . . . . . . . 24
2.5 Gas Pressure . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
2.6 Interaction Between Gas Pressure and Liquid Pressure . . . . 29
2.7 Equilibrium in Other Force Fields . . . . . . . . . . . . . . . 32
2.8 Surface Stress (Capillarity) . . . . . . . . . . . . . . . . . . . 36
2.9 Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
3. Kinematics of Fluid Flow 43
3.1 Methods of Representation . . . . . . . . . . . . . . . . . . . 43
3.2 Acceleration of a Flow . . . . . . . . . . . . . . . . . . . . . . 47
3.3 Topology of a Flow . . . . . . . . . . . . . . . . . . . . . . . . 48
3.4 Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
4. Dynamics of Fluid Flow 59
4.1 Dynamics of Inviscid Liquids . . . . . . . . . . . . . . . . . . 59
4.1.1 Continuity and the Bernoulli Equation . . . . . . . . . 59
4.1.2 Consequences of the Bernoulli Equation . . . . . . . . 63
4.1.3 Pressure Measurement . . . . . . . . . . . . . . . . . . 71
4.1.4 Interfaces and Formation of Vortices . . . . . . . . . . 73
4.1.5 Potential Flow . . . . . . . . . . . . . . . . . . . . . . 76
4.1.6 Wing Lift and the Magnus Effect . . . . . . . . . . . . 88
4.1.7 Balance of Momentum for Steady Flows . . . . . . . . 91
4.1.8 Waves on a Free Liquid Surface . . . . . . . . . . . . . 99
4.1.9 Problems . . . . . . . . . . . . . . . . . . . . . . . . . 109
4.2 Dynamics of Viscous Liquids . . . . . . . . . . . . . . . . . . 114
4.2.1 Viscosity (Inner Friction), the Navier–Stokes Equation 114
v
vii
Contents
4.2.2 Mechanical Similarity, Reynolds Number . . . . . . . . 118
4.2.3 Laminar Boundary Layers . . . . . . . . . . . . . . . . 119
4.2.4 Onset of Turbulence . . . . . . . . . . . . . . . . . . . 122
4.2.5 Fully Developed Turbulence . . . . . . . . . . . . . . . 132
4.2.6 Flow Separation and Vortex Formation . . . . . . . . 140
4.2.7 Secondary Flows . . . . . . . . . . . . . . . . . . . . . 147
4.2.8 Flows with Prevailing Viscosity . . . . . . . . . . . . . 149
4.2.9 Flows Through Pipes and Channels . . . . . . . . . . 156
4.2.10 Drag of Bodies in Liquids . . . . . . . . . . . . . . . . 161
4.2.11 Flows in Non-Newtonian Media . . . . . . . . . . . . . 170
4.2.12 Problems . . . . . . . . . . . . . . . . . . . . . . . . . 175
4.3 Dynamics of Gases . . . . . . . . . . . . . . . . . . . . . . . . 181
4.3.1 Pressure Propagation, Velocity of Sound . . . . . . . . 181
4.3.2 Steady Compressible Flows . . . . . . . . . . . . . . . 185
4.3.3 Conservation of Energy . . . . . . . . . . . . . . . . . 190
4.3.4 Theory of Normal Shock Waves . . . . . . . . . . . . . 191
4.3.5 Flows past Corners, Free Jets . . . . . . . . . . . . . . 195
4.3.6 Flows with Small Perturbations . . . . . . . . . . . . . 199
4.3.7 Flows past Airfoils . . . . . . . . . . . . . . . . . . . . 203
4.3.8 Problems . . . . . . . . . . . . . . . . . . . . . . . . . 208
4.4 Aerodynamics . . . . . . . . . . . . . . . . . . . . . . . . . . . 212
4.4.1 Bird Flight . . . . . . . . . . . . . . . . . . . . . . . . 213
4.4.2 Airfoils and Wings . . . . . . . . . . . . . . . . . . . . 215
4.4.3 Airfoil and Wing Theory . . . . . . . . . . . . . . . . 222
4.4.4 Aerodynamic Facilities . . . . . . . . . . . . . . . . . 237
4.4.5 Transonic Aerodynamics, Swept Wings . . . . . . . . 238
4.4.6 Shock–Boundary-Layer Interaction . . . . . . . . . . . 244
4.4.7 Flow Separation . . . . . . . . . . . . . . . . . . . . . 250
4.4.8 Supersonic Aerodynamics, Delta Wings . . . . . . . . 252
4.4.9 Problems . . . . . . . . . . . . . . . . . . . . . . . . . 259
5. Fundamental Equations of Fluid Mechanics 265
5.1 Continuity Equation . . . . . . . . . . . . . . . . . . . . . . . 265
5.2 Navier–Stokes Equations . . . . . . . . . . . . . . . . . . . . . 266
5.2.1 Laminar Flows . . . . . . . . . . . . . . . . . . . . . . 266
5.2.2 Reynolds Equations for Turbulent Flows . . . . . . . . 273
5.3 Energy Equation . . . . . . . . . . . . . . . . . . . . . . . . . 278
5.3.1 Laminar Flows . . . . . . . . . . . . . . . . . . . . . . 278
5.3.2 Turbulent Flows . . . . . . . . . . . . . . . . . . . . . 282
5.4 Fundamental Equations as Conservation Laws . . . . . . . . . 284
5.4.1 Hierarchy of Fundamental Equations . . . . . . . . . . 284
5.4.2 Navier–Stokes Equations . . . . . . . . . . . . . . . . . 287
5.4.3 Derived Model Equations . . . . . . . . . . . . . . . . 290
5.4.4 Reynolds Equations for Turbulent Flows . . . . . . . . 298
5.4.5 Turbulence Models . . . . . . . . . . . . . . . . . . . . 299
viii Contents
5.4.6 Multiphase Flows . . . . . . . . . . . . . . . . . . . . . 317
5.4.7 Reactive Flows . . . . . . . . . . . . . . . . . . . . . . 329
5.5 Differential Equations of Perturbations . . . . . . . . . . . . . 332
5.6 Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 338
6. Instabilities and Turbulent Flows 345
6.1 Fundamentals of Turbulent Flows . . . . . . . . . . . . . . . . 345
6.2 Onset of Turbulence . . . . . . . . . . . . . . . . . . . . . . . 346
6.2.1 Fluid-Mechanical Instabilities . . . . . . . . . . . . . . 347
6.2.2 Linear Stability Analysis . . . . . . . . . . . . . . . . . 350
6.2.3 Transition to Turbulence . . . . . . . . . . . . . . . . 373
6.3 Developed Turbulence . . . . . . . . . . . . . . . . . . . . . . 378
6.3.1 The Notion of a Mixing Length . . . . . . . . . . . . . 378
6.3.2 Turbulent Mixing . . . . . . . . . . . . . . . . . . . . . 380
6.3.3 Energy Relations in Turbulent Flows . . . . . . . . . . 381
6.4 Classification of Turbulent Flows . . . . . . . . . . . . . . . . 384
6.4.1 Free Turbulence . . . . . . . . . . . . . . . . . . . . . 385
6.4.2 Turbulence near Solid Boundaries . . . . . . . . . . . 388
6.4.3 Rotating and Stratified Flows . . . . . . . . . . . . . . 391
6.4.4 Turbulence in Wind Tunnels . . . . . . . . . . . . . . 392
6.4.5 Two-Dimensional Turbulence . . . . . . . . . . . . . . 396
6.4.6 Structures and Statistics . . . . . . . . . . . . . . . . . 399
6.5 Some New Developments in Turbulence . . . . . . . . . . . . 400
6.5.1 Decomposition into small and large scales . . . . . . . 400
6.5.2 Lagrangian Investigations of Turbulence . . . . . . . . 406
6.5.3 Field-Theoretic Methods . . . . . . . . . . . . . . . . . 407
6.5.4 Outlook . . . . . . . . . . . . . . . . . . . . . . . . . . 407
7. Convective Heat and Mass Transfer 409
7.1 Fundamentals of Heat and Mass Transfer . . . . . . . . . . . 410
7.1.1 Free and Forced Convection . . . . . . . . . . . . . . . 410
7.1.2 Heat Conduction and Convection . . . . . . . . . . . . 412
7.1.3 Diffusion and Convection . . . . . . . . . . . . . . . . 414
7.2 Free Convection . . . . . . . . . . . . . . . . . . . . . . . . . . 415
7.2.1 Rayleigh–B´enard Convection . . . . . . . . . . . . . . 415
7.2.2 Convection at a Vertical Plate . . . . . . . . . . . . . 426
7.2.3 Convection at a Horizontal Cylinder . . . . . . . . . . 432
7.3 Forced Convection . . . . . . . . . . . . . . . . . . . . . . . . 433
7.3.1 Pipe Flows . . . . . . . . . . . . . . . . . . . . . . . . 433
7.3.2 Boundary-Layer Flows . . . . . . . . . . . . . . . . . . 438
7.3.3 Bodies in Flows . . . . . . . . . . . . . . . . . . . . . . 443
7.4 Heat and Mass Exchange . . . . . . . . . . . . . . . . . . . . 444
7.4.1 Diffusion Convection . . . . . . . . . . . . . . . . . . . 444
7.4.2 Mass Exchange at a Flat Plate . . . . . . . . . . . . . 451
Contents ix
8. Multiphase Flows 455
8.1 Fundamentals of Multiphase Flows . . . . . . . . . . . . . . . 455
8.1.1 Definitions . . . . . . . . . . . . . . . . . . . . . . . . 456
8.1.2 Flow Patterns . . . . . . . . . . . . . . . . . . . . . . . 459
8.1.3 Flow Pattern Maps . . . . . . . . . . . . . . . . . . . . 459
8.2 Flow Models . . . . . . . . . . . . . . . . . . . . . . . . . . . 462
8.2.1 The One-Dimensional Two-Fluid Model . . . . . . . . 463
8.2.2 Mixing Models . . . . . . . . . . . . . . . . . . . . . . 466
8.2.3 The Drift-Flow Model . . . . . . . . . . . . . . . . . . 468
8.2.4 Bubbles and Drops . . . . . . . . . . . . . . . . . . . . 470
8.2.5 Spray Flows . . . . . . . . . . . . . . . . . . . . . . . . 475
8.2.6 Liquid–Solid Transport . . . . . . . . . . . . . . . . . 479
8.2.7 Fluidization of Particle Beds . . . . . . . . . . . . . . 482
8.3 Pressure Loss and Volume Fraction in Hydraulic Components 484
8.3.1 Friction Loss in Horizontal Straight Pipes . . . . . . . 485
8.3.2 Acceleration Losses . . . . . . . . . . . . . . . . . . . . 489
8.4 Propagation Velocity of Density Waves and Critical Mass Fluxes493
8.4.1 Density Waves . . . . . . . . . . . . . . . . . . . . . . 493
8.4.2 Critical Mass Fluxes . . . . . . . . . . . . . . . . . . . 496
8.4.3 Cavitation . . . . . . . . . . . . . . . . . . . . . . . . . 503
8.5 Instabilities in Two-Phase Flows . . . . . . . . . . . . . . . . 507
8.6 Turbulence in Dispersed Two-Phase Flows . . . . . . . . . . . 513
8.6.1 General Aspects . . . . . . . . . . . . . . . . . . . . . 513
8.6.2 The Mixing Length Concept . . . . . . . . . . . . . . 518
8.6.3 Transport Equation Models for Turbulence . . . . . . 520
9. Reactive Flows 523
9.1 Fundamentals of Reactive Flows . . . . . . . . . . . . . . . . 523
9.1.1 Rate Laws and Reaction Orders . . . . . . . . . . . . 525
9.1.2 Relation Between Forward and Reverse Reactions . . 526
9.1.3 Elementary Reactions and Reaction Molecularity . . . 527
9.1.4 Temperature Dependence of Rate Coefficients . . . . . 531
9.1.5 Pressure Dependence of Rate Coefficients . . . . . . . 532
9.1.6 Characteristics of Reaction Mechanisms . . . . . . . . 535
9.2 Laminar Reactive Flows . . . . . . . . . . . . . . . . . . . . . 540
9.2.1 Structure of Premixed Flames . . . . . . . . . . . . . . 540
9.2.2 Flame Velocity of Premixed Flames . . . . . . . . . . 542
9.2.3 Sensitivity Analysis . . . . . . . . . . . . . . . . . . . 543
9.2.4 Nonpremixed Counterflow Flames . . . . . . . . . . . 544
9.2.5 Nonpremixed Jet Flames . . . . . . . . . . . . . . . . 547
9.2.6 Nonpremixed Flames with Fast Chemistry . . . . . . . 548
9.2.7 Exhaust Gas Cleaning with Plasma Sources . . . . . . 550
9.2.8 Flows in Etching Reactors . . . . . . . . . . . . . . . . 551
9.2.9 Heterogeneous Catalysis . . . . . . . . . . . . . . . . . 553
9.3 Turbulent Reactive Flows . . . . . . . . . . . . . . . . . . . . 555
x Contents
9.3.1 Overview and Concepts . . . . . . . . . . . . . . . . . 555
9.3.2 Direct Numerical Simulation . . . . . . . . . . . . . . 556
9.3.3 Mean Reaction Rates . . . . . . . . . . . . . . . . . . 558
9.3.4 Eddy-Break-Up Models . . . . . . . . . . . . . . . . . 563
9.3.5 Turbulent Nonpremixed Flames . . . . . . . . . . . . . 563
9.3.6 Turbulent Premixed Flames . . . . . . . . . . . . . . . 575
9.4 Hypersonic Flows . . . . . . . . . . . . . . . . . . . . . . . . . 581
9.4.1 Physical-Chemical Phenomena in Re-Entry Flight . . 581
9.4.2 Chemical Nonequilibrium . . . . . . . . . . . . . . . . 583
9.4.3 Thermal Nonequilibrium . . . . . . . . . . . . . . . . . 585
9.4.4 Surface Reactions on Re-entry Vehicles . . . . . . . . 588
10.Flows in the Atmosphere and in the Ocean 593
10.1 Fundamentals of Flows in the Atmosphere and in the Ocean . 593
10.1.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . 593
10.1.2 Fundamental Equations in Rotating Systems . . . . . 593
10.1.3 Geostrophic Flow . . . . . . . . . . . . . . . . . . . . . 597
10.1.4 Vorticity . . . . . . . . . . . . . . . . . . . . . . . . . . 599
10.1.5 Ekman Layer . . . . . . . . . . . . . . . . . . . . . . . 602
10.1.6 Prandtl Layer . . . . . . . . . . . . . . . . . . . . . . . 605
10.2 Flows in the Atmosphere . . . . . . . . . . . . . . . . . . . . . 607
10.2.1 Thermal Wind Systems . . . . . . . . . . . . . . . . . 607
10.2.2 Thermal Convection . . . . . . . . . . . . . . . . . . . 611
10.2.3 Gravity Waves . . . . . . . . . . . . . . . . . . . . . . 613
10.2.4 Vortices . . . . . . . . . . . . . . . . . . . . . . . . . . 616
10.2.5 Global Atmospheric Circulation . . . . . . . . . . . . . 621
10.3 Flows in the Ocean . . . . . . . . . . . . . . . . . . . . . . . . 623
10.3.1 Wind-Driven Flows . . . . . . . . . . . . . . . . . . . . 624
10.3.2 Water Waves . . . . . . . . . . . . . . . . . . . . . . . 626
10.4 Application to Atmospheric and Oceanic Flows . . . . . . . . 629
10.4.1 Weather Forecast . . . . . . . . . . . . . . . . . . . . . 629
10.4.2 Greenhouse Effect and Climate Prediction . . . . . . . 631
10.4.3 Ozone Hole . . . . . . . . . . . . . . . . . . . . . . . . 635
11.Microflows 639
11.1 Fundamentals of Microflows . . . . . . . . . . . . . . . . . . . 639
11.1.1 Application of Microflows . . . . . . . . . . . . . . . . 639
11.1.2 Fluid Models . . . . . . . . . . . . . . . . . . . . . . . 641
11.1.3 Microflows of Gases . . . . . . . . . . . . . . . . . . . 643
11.1.4 Microflows of Liquids . . . . . . . . . . . . . . . . . . 645
11.2 Molecular Models . . . . . . . . . . . . . . . . . . . . . . . . . 647
11.2.1 Fundamentals of Molecular Models . . . . . . . . . . . 647
11.2.2 Monte-Carlo-Simulation . . . . . . . . . . . . . . . . . 650
11.2.3 Molecular Dynamic Simulation . . . . . . . . . . . . . 653
11.3 Continuum Models . . . . . . . . . . . . . . . . . . . . . . . . 655
Contents xi
11.3.1 Similarity Discussion . . . . . . . . . . . . . . . . . . . 655
11.3.2 Modifications of Boundary Conditions . . . . . . . . . 657
11.3.3 Electrokinetic Effects . . . . . . . . . . . . . . . . . . . 661
11.3.4 Wetting and Thin Films . . . . . . . . . . . . . . . . . 670
11.4 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . 678
11.4.1 Pressure Drop . . . . . . . . . . . . . . . . . . . . . . 679
11.4.2 Laminar-Turbulent Transition . . . . . . . . . . . . . . 681
11.4.3 Heat Transfer . . . . . . . . . . . . . . . . . . . . . . . 682
12.Biofluid Mechanics 685
12.1 Fundamentals of Biofluid Mechanics . . . . . . . . . . . . . . 685
12.1.1 Biofluid Mechanics of Animals . . . . . . . . . . . . . 687
12.1.2 Biofluid Mechanics of Humans . . . . . . . . . . . . . 690
12.1.3 Blood Rheology . . . . . . . . . . . . . . . . . . . . . . 697
12.2 Swimming and Flight . . . . . . . . . . . . . . . . . . . . . . 700
12.2.1 Motion of Protozoa . . . . . . . . . . . . . . . . . . . . 700
12.2.2 Swimming of Fish . . . . . . . . . . . . . . . . . . . . 703
12.2.3 Flow Control . . . . . . . . . . . . . . . . . . . . . . . 705
12.2.4 Bird Flight . . . . . . . . . . . . . . . . . . . . . . . . 707
12.3 Human Heart Flow . . . . . . . . . . . . . . . . . . . . . . . . 712
12.3.1 Physiology and Anatomy of the Heart . . . . . . . . . 713
12.3.2 Structure of the Heart . . . . . . . . . . . . . . . . . . 715
12.3.3 Excitation Physiology of the Heart . . . . . . . . . . . 719
12.3.4 Flow in the Heart . . . . . . . . . . . . . . . . . . . . 722
12.3.5 Cardiac Valves . . . . . . . . . . . . . . . . . . . . . . 731
12.4 Flow in Blood Vessels . . . . . . . . . . . . . . . . . . . . . . 734
12.4.1 Unsteady Pipe Flow . . . . . . . . . . . . . . . . . . . 738
12.4.2 Unsteady Arterial Flow . . . . . . . . . . . . . . . . . 742
12.4.3 Arterial Branchings . . . . . . . . . . . . . . . . . . . 745
12.4.4 Microcirculation . . . . . . . . . . . . . . . . . . . . . 749
Selected Bibliography 753
Index 785
xii Contents
1. Introduction
The development of modern fluid mechanics is closely connected to the name
of its founder, Ludwig Prandtl. In 1904 it was his famous article on fluid
motion with very small friction that introduced boundary-layer theory. His
article on airfoil theory, published the following decade, formed the basis
for the calculation of friction drag, heat transfer, and flow separation. He
introduced fundamental ideas on the modeling of turbulent flows with the
Prandtl mixing length for turbulent momentum exchange. His work on gas
dynamics, such as the Prandtl–Glauert correction for compressible flows, the
theory of shock waves and expansion waves, as well as the first photographs
of supersonic flows in nozzles, reshaped this research area. He applied the
methods of fluid mechanics to meteorology, and was also pioneering in his
contributions to problems of elasticity, plasticity, and rheology.
Prandtl was particularly successful in bringing together theory and experiment, with the experiments serving to verify his theoretical ideas. It was
this that gave Prandtl’s experiments their importance and precision. His famous experiment with the tripwire, through which he discovered the turbulent boundary layer and the effect of turbulence on flow separation, is one
example. The tripwire was not merely inspiration, but rather was the result
of consideration of discrepancies in Eiffel’s drag measurements on spheres.
Two experiments with different tripwire positions were enough to establish
the generation of turbulence and its effect on the flow separation. For his
experiments Prandtl developed wind tunnels and measuring apparatus, such
as the G¨ottingen wind tunnel and the Prandtl stagnation tube. His scientific
results often seem to be intuitive, with the mathematical derivation present
only to serve the physical understanding, although it then does indeed deliver
the decisive result and the simplified physical model. According to Werner
Heisenberg, Prandtl was able to “see” the solutions of differential equations
without calculating them.
Selected individual examples aim to introduce the reader to the path to
understanding of fluid mechanics prepared by Prandtl and to the contents and
modeling in each chapter. As an example of the dynamics of flows (Chapter
4), the different regimes in the flow past a vehicle, an incompressible flow,
and in the flow past an automobile, a compressible flow, are described.
H. Oertel (ed.), Prandtl-Essentials of Fluid Mechanics, 1
Applied Mathematical Sciences 158, DOI 10.1007/978-1-4419-1564-1_1,
© Springer Science+Business Media, LLC 2010
2 1. Introduction
In flow past a vehicle, we differentiate between the free flow over the
surface and the flow between the vehicle moving with velocity U∞ and the
street which is at rest. At the stagnation point, where the pressure is at its
maximum, the flow divides, and is accelerated along the hood and past the
spoiler along the base of the vehicle. This leads to a pressure drop and to a
negative downward pressure on the street, as shown in Figure 1.1. The flow
again slows down at the windshield, and is decelerated downstream along
the roof and the trunk. This leads to a pressure increase with a positive lift,
while the negative downward pressure on the street along the lower side of
the vehicle remains.
Viscous flow (Section 4.2) on the upper and lower sides of the vehicle
is restricted to the boundary-layer flow, which becomes the viscous wake
at the back edge of the vehicle. In the wind tunnel experiment the flow is
made visible with smoke, and this shows that downstream from the back of
the automobile, a backflow region forms. This is seen in the figure as the
black region. Outside the boundary layer and the wake, the flow is essentially
inviscid (Section 4.1).
In order to be able to understand the different flow regimes, and therefore
to establish a basis for the aerodynamic design of a motor vehicle, Prandtl
worked out the carefully prepared path (Chapters 2 to 4) from the properties
of liquids and gases, to kinematics, and to the dynamics of inviscid and viscous
flows. By following this path, too, the reader will successively gain physical
understanding of this first flow example.
The second flow example considers compressible flow past a wing with a
shock wave (Sections 4.3 and 4.4.5). The free flow toward the wing has the
Sichtbarmachung im Nachlauf
boundary layer
wake
inviscid flow
wake flow visualization
Fig. 1.1. Flow past a vehicle