Siêu thị PDFTải ngay đi em, trời tối mất

Thư viện tri thức trực tuyến

Kho tài liệu với 50,000+ tài liệu học thuật

© 2023 Siêu thị PDF - Kho tài liệu học thuật hàng đầu Việt Nam

Phytoremediation of Heavy Metal Contaminated Sites by Mining in Thai Nguyen Province Vietnam
PREMIUM
Số trang
181
Kích thước
9.2 MB
Định dạng
PDF
Lượt xem
1749

Phytoremediation of Heavy Metal Contaminated Sites by Mining in Thai Nguyen Province Vietnam

Nội dung xem thử

Mô tả chi tiết

Phytoremediation of Heavy Metal Contaminated Sites by

Mining in Thai Nguyen Province Vietnam

Ngoc Son Hai Nguyen

(B.Sc., M.Eng.)

A thesis submitted in fulfilment of the requirements for the degree of

Doctor of Philosophy

Global Centre for Environmental Remediation (GCER)

The Cooperative Research Centre for Contamination Assessment and

Remediation of the Environment (CRC CARE)

The University of Newcastle, Australia

February, 2020

This research was supported by an Australian Government Research Training

Program (RTP) Scholarship

i

DECLARATION

I hereby certify that the work embodied in the thesis is my own work, conducted under

normal supervision.

The thesis contains no material which has been accepted for the award of any other degree

or diploma in any university or other tertiary institution and, to the best of my knowledge

and belief, contains no material previously published or written by another person, except

where due reference has been made in the text. I give consent to the final version of my

thesis being made available worldwide when deposited in the University’s Digital

Repository**, subject to the provisions of the Copyright Act 1986.

**Unless an Embargo has been approved for a determined period.

Ngoc Son Hai Nguyen

Signed Date 22/ 02 / 2020

ii

ACKNOWLEDGEMENTS

Firstly, I would like to express my deepest appreciation to my primary supervisor Prof Ravi

Naidu, for his guidance, encouragement, excellent advice, and kindness support during my

research. Your assistance throughout the process of research conceptualisation and design,

as well as data collection and analyses has been invaluable, and has directly contributed to

the quality of the research. Your personal work ethic has instilled in me the desire to achieve

my own goals, particularly during long days involved in data collection when I often

wondered if my research would ever truly be finished! Most importantly though, I have

enjoyed building a professional and personal friendship with you, and some of my greatest

memories from this whole PhD experience involved sharing a few quiet beers with you to

unwind after a week’s work. Thank you for all you have done for me over these past few

years. I would like to extend a massive thanks to my co-supervisor Dr Peter Sanderson for

his guidance, helpful suggestions, and encouragement. He spent many hours providing me

guidance both in the lab as well as with data analyses, statistical support and revise thesis.

Many thanks must also go to other co-supervisors, Prof Nanthi Bolan, Dr Jianhua Du and Dr

Fangjie. Your knowledge regarding the implementation of research in the real world has been

invaluable in ensuring that my thesis generates far-reaching practical applications. I am

grateful for the assistance and support of Prof Nanthi Bolan for his valuable suggestions,

guidance and encouragement. Your assistance regarding my research was helpful, particularly

guidance during expriments in the lab, glasshouse and research proposal writing up. I express

my sincere thanks to Dr Jianhua Du for his patient guidance and support for soil mineral

analysis. My sincere appreciation to Dr. Fangjie for her kind support, mentorship, statistical

support and logistic help to carry out this research. I sincerely acknowledge all the staff

members and students of GCER, UON for their cooperation and friendship during the study.

I appreciate Dr. Mahmud Rahman for providing guidance and analysis technique support

for my PhD work.

I would like to express my love and special appreciation to my bride, Thi Hang Tran who

helped me in many aspects of my work. I was inspired by her endless love and patience.

Last but not least, my loving thanks and heartfelt gratitude go to my family, especially my

father, Ngoc Nong Nguyen, and my mother, Thi Bac Do and my younger sister, Ngoc Thi

Dung Nguyen, for always being by my side and consistently encouraging me to do my

best. Special thanks to my dad, my mum, relatives and friends in Vietnam and my sister’s

iii

family in New Zealand for trusting me and being such an excellent source of support. This

thesis is dedicated to my family and my wife. Without their support, it would not have

been possible for me to finish this thesis.

Finally, I would like to acknowledge the Electron Microscope & X-Ray Unit of University

of Newcastle, Australia for SEM-EDS and XRD analysis, Inorganic Lab, GCER of

University of Newcastle, Australia for characterisation analysis and ICP-MS/ICP-EOS

analysis. Also, I extend my gratitude to the Australia Awards (AAS) scholarship and the

Cooperative Research Centre for Contamination Assessment and Remediation of the

Environment (CRC CARE) for financial support.

iv

TABLE OF CONTENTS

DECLARATION -------------------------------------------------------------------------------------------- I

ACKNOWLEDGEMENTS ----------------------------------------------------------------------------- II

TABLE OF CONTENTS-------------------------------------------------------------------------------- IV

LIST OF ABBREVIATIONS--------------------------------------------------------------------------- X

LIST OF FIGURES--------------------------------------------------------------------------------------- XI

LIST OF TABLES -------------------------------------------------------------------------------------- XIV

LIST OF PUBLICATIONS -------------------------------------------------------------------------- XVI

ABSTRACT-------------------------------------------------------------------------------------------------- 1

CHAPTER 1.INTRODUCTION -------------------------------------------------------------------- 4

1.1. Risks of contaminated sites and remediation technologies ---------------------------------- 4

1.2. Heavy metals and causes leading to environmental pollution ------------------------------ 6

1.3. Phytoremediation -------------------------------------------------------------------------------------- 6

1.4. Heavy metal pollution in Vietnam and mining in Thai Nguyen province --------------- 7

1.5. Research using plants for phytormediation------------------------------------------------------ 8

1.6. Research gaps------------------------------------------------------------------------------------------- 8

1.7. Research objectives ----------------------------------------------------------------------------------10

1.8. Layouts of chapters-----------------------------------------------------------------------------------10

CHAPTER 2. REVIEW OF THE LITERATURE----------------------------------------------12

2.1. Definition of heavy metal(loid)s --------------------------------------------------------------------12

2.2. Sources of heavy metal(loid)s -----------------------------------------------------------------------12

2.3. Dynamics of heavy metal(loid)s in soils ----------------------------------------------------------15

2.4. Sorption/desorption process--------------------------------------------------------------------------16

v

2.5. Transformation of metal(loid)s in soil-------------------------------------------------------------17

2.6. Soil amendments for remediation-------------------------------------------------------------------18

2.7. Mechanisms of heavy metal uptake by hyperaccumulation plants -------------------------19

2.8. Techniques of phytoremediation --------------------------------------------------------------------20

2.8.1. Phytoextraction ------------------------------------------------------------------------- 21

2.8.2. Phytostabilisation ---------------------------------------------------------------------- 21

2.8.3. Phytofiltration--------------------------------------------------------------------------- 22

2.8.4. Phytovolatilisation --------------------------------------------------------------------- 22

2.8.5. Phytodegradation----------------------------------------------------------------------- 22

2.8.6. Rhizodegradation----------------------------------------------------------------------- 23

2.8.7. Phytodesalination ---------------------------------------------------------------------- 23

2.9. Phytoextraction as a cost-effective plant-based technology ----------------------------------23

2.10. Species selection for phytoremediation----------------------------------------------------------26

2.11. Properties of growth substratum in field scale -------------------------------------------------28

2.12. Factors affecting the uptake mechanisms -------------------------------------------------------28

2.12.1. The plant species-----------------------------------------------------------------------------29

2.12.2. Properties of medium -----------------------------------------------------------------------29

2.12.3. The root zone----------------------------------------------------------------------------------30

2.12.4. Vegetative uptake ----------------------------------------------------------------------------30

2.12.5. Addition of chelating agents--------------------------------------------------------- 30

2.13. Phytoremediation- mine metal contaminated soils--------------------------------------------32

2.13.1. Phytoremediation --------------------------------------------------------------------- 32

2.13.2. Application of phytoremediation: global study ----------------------------------- 33

vi

2.14. Mobilisation of soil contaminants-----------------------------------------------------------------34

2.15. The mechanisms of heavy metal uptake by hyperaccumulator plants--------------------35

2.16. Role of phytoexaction of HMs using chelates and native plants in contaminated soils------- 36

2.17. Immobilisation of soil contaminants -------------------------------------------------------------37

2.18. Rehabilitation of metal mining sites in Vietnam ----------------------------------------------38

2.18.1. Thai Nguyen Province mining sites------------------------------------------------- 39

2.18.2. Trai Cau Iron mine site -------------------------------------------------------------- 39

2.18.3. Cay Cham titanium ore mine site --------------------------------------------------- 40

2.18.4. Cuoi Nac mine site-------------------------------------------------------------------- 41

2.18.5. Hich Village lead zinc mine site ---------------------------------------------------- 41

2.19. Situation of using local plants and exotic plants in Vietnam -------------------------------42

2.20. Heavy metal pollution in soil in mining sites in Thai Nguyen province -----------------43

2.21. Selected plants and theirs applications in rehabilitation in Thai Nguyen province -------------44

2.21.1. Reed plant (Phragmites australis)-------------------------------------------------- 45

2.21.2. Lau plant (Erianthus arundinaceus (Retz.))--------------------------------------- 46

2.21.3. Ryegrass (Lolium multiflorum)------------------------------------------------------ 47

2.22. A risk-based remediation approach ---------------------------------------------------------------47

CHAPTER 3: METHODOLOGY -------------------------------------------------------------------50

3.1. Overview of the research -----------------------------------------------------------------------------50

3.2. Methodologies-------------------------------------------------------------------------------------------50

3.2.1. Study areas ------------------------------------------------------------------------------ 50

3.2.2. Soil and plant sampling---------------------------------------------------------------- 52

3.2.3. Characterisation soil and plants samples------------------------------------------- 54

vii

3.2.4. Treatments------------------------------------------------------------------------------- 55

3.2.5. First incubation experiments---------------------------------------------------------- 55

3.2.6. Preparation------------------------------------------------------------------------------ 56

3.2.7. Second incubation experiment-------------------------------------------------------- 56

3.2.8. Pot experiments in greenhouse ------------------------------------------------------- 56

3.2.9. Field sampling and analyses of plant biomass ------------------------------------ 57

3.2.10. Soil and plant analysis --------------------------------------------------------------- 57

3.2.11. Data processing methods ------------------------------------------------------------ 58

CHAPTER 4: MINE SITE SOIL AND PLANT CHARACTERISATION--------------59

4.1. Introduction ----------------------------------------------------------------------------------------------59

4.2. Materials and methods---------------------------------------------------------------------------------62

4.2.1. Study areas ------------------------------------------------------------------------------ 62

4.2.2. Sample design--------------------------------------------------------------------------- 63

4.2.3. Soil physicochemical properties------------------------------------------------------ 64

4.2.4. Plant sample analyses ----------------------------------------------------------------- 64

4.2.5. The BCF, TF and EF------------------------------------------------------------------- 65

4.2.6. Soil mineralogy ------------------------------------------------------------------------- 66

4.2.7. Statistical analysis---------------------------------------------------------------------- 66

4.3. Results and discussion---------------------------------------------------------------------------------67

4.3.1. Physicochemical parameters of soils ------------------------------------------------ 67

4.3.2. Accumulation factors of HMs for PA and EA -------------------------------------- 70

4.3.3. Soil minerals ---------------------------------------------------------------------------- 74

viii

4.3.4. Correlation between HMs (As, Cd, Cu, Pb and Zn) contents in soil and soil

properties --------------------------------------------------------------------------------------- 76

4.3.5. The influence of soil properties on HMs content levels in EA and PA ---------- 79

4.4. Conclusion------------------------------------------------------------------------------------------------86

CHAPTER 5: CHELATE-ASSISTED ENHANCED HEAVY METAL

BIOAVAILABILITY IN MINED SOILS: A COMPARATIVE STUDY ----------------90

5.1. Introduction ----------------------------------------------------------------------------------------------90

5.2. Materials and methods---------------------------------------------------------------------------------92

5.2.1 Sampling---------------------------------------------------------------------------------- 92

5.2.2. Characterisation------------------------------------------------------------------------ 92

5.2.3. SEM, FTIR and XRD analysis -------------------------------------------------------- 94

5.2.4. Chelate-assisted mobilisation of metals--------------------------------------------- 94

5.3. Results-----------------------------------------------------------------------------------------------------96

5.3.1. Soil properties -------------------------------------------------------------------------- 96

5.3.2. Mineralogical composition of mine soils using XRD------------------------------ 98

5.3.3. SEM of minerals------------------------------------------------------------------------ 99

5.3.4. Chelate metal extraction--------------------------------------------------------------101

5.4. Discussion ---------------------------------------------------------------------------------------------- 103

5.5. Conclusions -------------------------------------------------------------------------------------------- 104

CHAPTER 6: CHELATE-ASSISTED METAL PHYTOAVAILABILITY IN THE

PLANT STUDIES ---------------------------------------------------------------------------------------- 106

6.1. Introduction -------------------------------------------------------------------------------------------- 106

6.2. Hypothesis---------------------------------------------------------------------------------------------- 108

6.3. Materials and methods------------------------------------------------------------------------------- 109

ix

6.3.1. Soil characterisation ------------------------------------------------------------------109

6.3.2. Plant sample analyses ----------------------------------------------------------------110

6.3.3. Pore water analysis -------------------------------------------------------------------111

6.3.4. Soil incubation -------------------------------------------------------------------------111

6.3.5. Plant growth experiment using chelates--------------------------------------------111

6.3.6. Statistical analysis---------------------------------------------------------------------113

6.4. Results and Discussion ------------------------------------------------------------------------------ 114

6.4.1. Physicochemical parameters of soils -----------------------------------------------114

6.4.2. Effects of EDTA, EDDS and NTA in 2 selected doses on plant growth --------115

6.4.3. Effects of EDTA, EDDS and NTA on pore water metal concentration---------118

6.4.4. Effects of EDTA, EDDS and NTA on root and shoot metal concentrations and

phytoextraction--------------------------------------------------------------------------------120

6.4.5. Effects of EDTA, EDDS and NTA on the uptake of HMs by Ryegrass---------124

6.5. Conclusions -------------------------------------------------------------------------------------------- 128

CHAPTER 7: CONCLUSION INCLUDING FUTURE RESEARCH ------------------ 130

7.1. Conclusion---------------------------------------------------------------------------------------------- 130

7.2. Future research ---------------------------------------------------------------------------------------- 133

REFERENCES -------------------------------------------------------------------------------------------- 136

APPENDIX ------------------------------------------------------------------------------------------------- 163

x

LIST OF ABBREVIATIONS

Aloxa, Mnoxa and Feoxa = Ammonium oxalate/oxalic acid extractable Al, Mn, Fe

CEC = Cation exchange capacity

DIC = Dissolved inorganic carbon

DOC = Dissolved organic carbon

EA= Erianthus arundinaceus (Retz.)

EC = Electrical conductivity

EDDS = S,S-ethylenediaminedi-succinic acid

EDS = Energy dispersive X-ray spectroscopy

EDTA = Ethylenediaminetetraacetic acid

FTIR = Fourier Transformed Infrared Spectroscopy

HMs = Heavy metal(loid)s

IC = Inorganic carbon

ICP-MS = Inductively coupled plasma mass spectrometry

MLR = Multiple linear regression

NTA= Nitrilotriacetate

OM = Organic matter

PA= Phragmites australis (Cav.)

PCA = Principal component analysis

SEM = Scanning Electron Microscope

TOC = Total organic carbon

WHC = Water Holding Capacity

XRD = X-ray diffraction

xi

LIST OF FIGURES

Fig. 2.1. The interaction between adsorption reactions of metal(loid)s in soil and their

bioavailability (Naidu and Kim, 2008, Bolan et al., 2014). -----------------------15

Fig. 2.2. Transformation pathways of metalloids in soil ---------------------------------------17

Fig. 2.3. The mechanisms of heavy metals uptake by plant through phytoremediation

technology (Tangahu et al., 2011) ----------------------------------------------------20

Fig. 2.4. Schematic representation of phytoremediation strategies ---------------------------20

Fig. 2.5. Schematic representation of phytoextraction of metals from soil (Favas et al.,

2014) --------------------------------------------------------------------------------------24

Fig. 2.6. Schematic representation of the processes of natural (A) and chelate-assisted

(B) phytoextraction (Favas et al., 2014).---------------------------------------------25

Fig. 2.7. Factors affecting the uptake mechanisms of heavy metals (Tangahu et al.,

2011) --------------------------------------------------------------------------------------29

Fig. 2.8. Uptake mechanisms on phytoremediation technology (ITRC, 2009)--------------33

Fig. 2.9. Mining locations in Thai Nguyen province, Vietnam (Anh et al., 2011)----------40

Fig. 2.10. Risk assessment methodology (CRC CARE, 2018)--------------------------------48

Fig. 3.1. Overview of research methodologies --------------------------------------------------50

Fig. 3.2. Locations of the research mining sites -------------------------------------------------51

Fig. 4.1. (a) Phytoremediation (Favas et al., 2014) (b) Factors affecting the uptake

mechanisms of heavy metals (Tangahu et al., 2011) -------------------------------60

Fig. 4.2. Mining soil sampling at the selected sites in Thai Nguyen province: (a) LH lead

zinc mine site, (b) HT tin mine site, and (c) TC iron mine site (d) PA (e) EA-------62

Fig. 4.3. The average contents of HMs in root, steam and leaf of PA and EA---------------72

Fig. 4.4. XRD results for HT tin mine soil, Ka = kaolinite, Q = quartz, Ar = arsenopyrite, Mu

= muscovite--------------------------------------------------------------------------------74

Fig. 4.5. EDS (a) (b) and SEM (c) results for HT tin mine soil -------------------------------74

xii

Fig. 4.6. XRD (a), EDS (b), SEM (c) results for LH Lead-Zinc mine soil, Q = quartz,

Ca= calcite, Fr = franklinite, Mu = muscovite, Sp = sphalerite, La =

lanarkite, Do = dolomite.---------------------------------------------------------------75

Fig. 4.7. XRD (a), EDS (b), SEM (c) results for TC iron mine soil, Ka = kaolinite , Go

= goethite, Q = quartz , A = anatase , He = hematite, Il = Iilite-------------------75

Fig. 4.8. Correlation among selected HMs (As, Cd, Cu, Pb, and Zn) and the soil pH in three mining

sites-----------------------------------------------------------------------------------------78

Fig. 4.9. Correlation between As and Fe content in HT mine soil ----------------------------79

Fig. 4.10. PCA component plot--------------------------------------------------------------------85

Fig. 5.1. Mining soil and plant sampling sites at the selected sites, corresponding to Ha

Thuong tin mine (HT), Hich Village lead-zinc mine (LH), and Trai Cau iron

mine (TC mine)---------------------------------------------------------------------------93

Fig. 5.2. Microprobe images of minerals in HT sample using SEM--------------------------99

Fig. 5.3. EDS (a) and SEM (b) analysis of the topsoil sample from the HT tin mine ---- 100

Fig. 5.4. EDS (a) and SEM (b) analysis of the topsoil sample from the LH lead-zinc

mine ------------------------------------------------------------------------------------- 100

Fig. 5.5. EDS (a) and SEM (b) analysis of the topsoil sample from the TC iron mine -- 101

Fig. 5.6. Lead extraction in the HT, LH and TC mines--------------------------------------- 102

Fig. 5.7. Zinc extraction in the HT, LH and TC mines --------------------------------------- 102

Fig. 5.8. Cadmium extraction in the HT, LH and TC mines--------------------------------- 103

Fig. 6.1. Plant experiments using chelates and plant toxicity symptoms------------------- 115

Fig. 6.2. Effects of the application of chelates on the fresh weight of ryegrass (Lolium

multiflorum) in three selected mining sites (HT, LH, TC mine). Lower case

letters represent significant difference between treatments---------------------- 116

Fig. 6.3. Effects of EDTA, EDDS and NTA in dry biomass of shoot---------------------- 117

Fig. 6.4. Effects of EDTA, EDDS and NTA in dry biomass of root------------------------ 117

Fig. 6.5. Effects of the application of chelates on the uptake of Cu in the roots and

shoots of the ryegrass. Values are means ± SD (n = 3). Lower case letters

xiii

represent significant difference between treatments for shoots and roots at

each site--------------------------------------------------------------------------------- 124

Fig. 6.6. Effects of the application of chelates on the uptake of Pb in the roots of the

ryegrass. Values are means ± SD (n = 3). Lower case letters represent

significant difference between treatments for shoots and roots at each site. -- 125

Fig. 6.7. Effects of the application of chelates on the uptake of Pb in the shoots of the

ryegrass. Values are means ± SD (n = 3). Different letters indicate

significant (p <0.05) difference with other treatments; values are in the

order: a > b > c)------------------------------------------------------------------------ 125

Fig. 6.8. Effects of the application of chelates on the uptake of As in the roots and

shoots of the ryegrass. Values are means ± SD (n = 3) -------------------------- 126

Fig. 6.9. Effects of the application of chelates on the uptake of Zn in the roots and

shoots of the ryegrass. Values are means ± SD (n = 3). Different letters

indicate significant (p <0.05) difference with other treatments; values are in

the order: a > b > c) ------------------------------------------------------------------- 127

Tải ngay đi em, còn do dự, trời tối mất!