Thư viện tri thức trực tuyến
Kho tài liệu với 50,000+ tài liệu học thuật
© 2023 Siêu thị PDF - Kho tài liệu học thuật hàng đầu Việt Nam

Phytoremediation of Heavy Metal Contaminated Sites by Mining in Thai Nguyen Province Vietnam
Nội dung xem thử
Mô tả chi tiết
Phytoremediation of Heavy Metal Contaminated Sites by
Mining in Thai Nguyen Province Vietnam
Ngoc Son Hai Nguyen
(B.Sc., M.Eng.)
A thesis submitted in fulfilment of the requirements for the degree of
Doctor of Philosophy
Global Centre for Environmental Remediation (GCER)
The Cooperative Research Centre for Contamination Assessment and
Remediation of the Environment (CRC CARE)
The University of Newcastle, Australia
February, 2020
This research was supported by an Australian Government Research Training
Program (RTP) Scholarship
i
DECLARATION
I hereby certify that the work embodied in the thesis is my own work, conducted under
normal supervision.
The thesis contains no material which has been accepted for the award of any other degree
or diploma in any university or other tertiary institution and, to the best of my knowledge
and belief, contains no material previously published or written by another person, except
where due reference has been made in the text. I give consent to the final version of my
thesis being made available worldwide when deposited in the University’s Digital
Repository**, subject to the provisions of the Copyright Act 1986.
**Unless an Embargo has been approved for a determined period.
Ngoc Son Hai Nguyen
Signed Date 22/ 02 / 2020
ii
ACKNOWLEDGEMENTS
Firstly, I would like to express my deepest appreciation to my primary supervisor Prof Ravi
Naidu, for his guidance, encouragement, excellent advice, and kindness support during my
research. Your assistance throughout the process of research conceptualisation and design,
as well as data collection and analyses has been invaluable, and has directly contributed to
the quality of the research. Your personal work ethic has instilled in me the desire to achieve
my own goals, particularly during long days involved in data collection when I often
wondered if my research would ever truly be finished! Most importantly though, I have
enjoyed building a professional and personal friendship with you, and some of my greatest
memories from this whole PhD experience involved sharing a few quiet beers with you to
unwind after a week’s work. Thank you for all you have done for me over these past few
years. I would like to extend a massive thanks to my co-supervisor Dr Peter Sanderson for
his guidance, helpful suggestions, and encouragement. He spent many hours providing me
guidance both in the lab as well as with data analyses, statistical support and revise thesis.
Many thanks must also go to other co-supervisors, Prof Nanthi Bolan, Dr Jianhua Du and Dr
Fangjie. Your knowledge regarding the implementation of research in the real world has been
invaluable in ensuring that my thesis generates far-reaching practical applications. I am
grateful for the assistance and support of Prof Nanthi Bolan for his valuable suggestions,
guidance and encouragement. Your assistance regarding my research was helpful, particularly
guidance during expriments in the lab, glasshouse and research proposal writing up. I express
my sincere thanks to Dr Jianhua Du for his patient guidance and support for soil mineral
analysis. My sincere appreciation to Dr. Fangjie for her kind support, mentorship, statistical
support and logistic help to carry out this research. I sincerely acknowledge all the staff
members and students of GCER, UON for their cooperation and friendship during the study.
I appreciate Dr. Mahmud Rahman for providing guidance and analysis technique support
for my PhD work.
I would like to express my love and special appreciation to my bride, Thi Hang Tran who
helped me in many aspects of my work. I was inspired by her endless love and patience.
Last but not least, my loving thanks and heartfelt gratitude go to my family, especially my
father, Ngoc Nong Nguyen, and my mother, Thi Bac Do and my younger sister, Ngoc Thi
Dung Nguyen, for always being by my side and consistently encouraging me to do my
best. Special thanks to my dad, my mum, relatives and friends in Vietnam and my sister’s
iii
family in New Zealand for trusting me and being such an excellent source of support. This
thesis is dedicated to my family and my wife. Without their support, it would not have
been possible for me to finish this thesis.
Finally, I would like to acknowledge the Electron Microscope & X-Ray Unit of University
of Newcastle, Australia for SEM-EDS and XRD analysis, Inorganic Lab, GCER of
University of Newcastle, Australia for characterisation analysis and ICP-MS/ICP-EOS
analysis. Also, I extend my gratitude to the Australia Awards (AAS) scholarship and the
Cooperative Research Centre for Contamination Assessment and Remediation of the
Environment (CRC CARE) for financial support.
iv
TABLE OF CONTENTS
DECLARATION -------------------------------------------------------------------------------------------- I
ACKNOWLEDGEMENTS ----------------------------------------------------------------------------- II
TABLE OF CONTENTS-------------------------------------------------------------------------------- IV
LIST OF ABBREVIATIONS--------------------------------------------------------------------------- X
LIST OF FIGURES--------------------------------------------------------------------------------------- XI
LIST OF TABLES -------------------------------------------------------------------------------------- XIV
LIST OF PUBLICATIONS -------------------------------------------------------------------------- XVI
ABSTRACT-------------------------------------------------------------------------------------------------- 1
CHAPTER 1.INTRODUCTION -------------------------------------------------------------------- 4
1.1. Risks of contaminated sites and remediation technologies ---------------------------------- 4
1.2. Heavy metals and causes leading to environmental pollution ------------------------------ 6
1.3. Phytoremediation -------------------------------------------------------------------------------------- 6
1.4. Heavy metal pollution in Vietnam and mining in Thai Nguyen province --------------- 7
1.5. Research using plants for phytormediation------------------------------------------------------ 8
1.6. Research gaps------------------------------------------------------------------------------------------- 8
1.7. Research objectives ----------------------------------------------------------------------------------10
1.8. Layouts of chapters-----------------------------------------------------------------------------------10
CHAPTER 2. REVIEW OF THE LITERATURE----------------------------------------------12
2.1. Definition of heavy metal(loid)s --------------------------------------------------------------------12
2.2. Sources of heavy metal(loid)s -----------------------------------------------------------------------12
2.3. Dynamics of heavy metal(loid)s in soils ----------------------------------------------------------15
2.4. Sorption/desorption process--------------------------------------------------------------------------16
v
2.5. Transformation of metal(loid)s in soil-------------------------------------------------------------17
2.6. Soil amendments for remediation-------------------------------------------------------------------18
2.7. Mechanisms of heavy metal uptake by hyperaccumulation plants -------------------------19
2.8. Techniques of phytoremediation --------------------------------------------------------------------20
2.8.1. Phytoextraction ------------------------------------------------------------------------- 21
2.8.2. Phytostabilisation ---------------------------------------------------------------------- 21
2.8.3. Phytofiltration--------------------------------------------------------------------------- 22
2.8.4. Phytovolatilisation --------------------------------------------------------------------- 22
2.8.5. Phytodegradation----------------------------------------------------------------------- 22
2.8.6. Rhizodegradation----------------------------------------------------------------------- 23
2.8.7. Phytodesalination ---------------------------------------------------------------------- 23
2.9. Phytoextraction as a cost-effective plant-based technology ----------------------------------23
2.10. Species selection for phytoremediation----------------------------------------------------------26
2.11. Properties of growth substratum in field scale -------------------------------------------------28
2.12. Factors affecting the uptake mechanisms -------------------------------------------------------28
2.12.1. The plant species-----------------------------------------------------------------------------29
2.12.2. Properties of medium -----------------------------------------------------------------------29
2.12.3. The root zone----------------------------------------------------------------------------------30
2.12.4. Vegetative uptake ----------------------------------------------------------------------------30
2.12.5. Addition of chelating agents--------------------------------------------------------- 30
2.13. Phytoremediation- mine metal contaminated soils--------------------------------------------32
2.13.1. Phytoremediation --------------------------------------------------------------------- 32
2.13.2. Application of phytoremediation: global study ----------------------------------- 33
vi
2.14. Mobilisation of soil contaminants-----------------------------------------------------------------34
2.15. The mechanisms of heavy metal uptake by hyperaccumulator plants--------------------35
2.16. Role of phytoexaction of HMs using chelates and native plants in contaminated soils------- 36
2.17. Immobilisation of soil contaminants -------------------------------------------------------------37
2.18. Rehabilitation of metal mining sites in Vietnam ----------------------------------------------38
2.18.1. Thai Nguyen Province mining sites------------------------------------------------- 39
2.18.2. Trai Cau Iron mine site -------------------------------------------------------------- 39
2.18.3. Cay Cham titanium ore mine site --------------------------------------------------- 40
2.18.4. Cuoi Nac mine site-------------------------------------------------------------------- 41
2.18.5. Hich Village lead zinc mine site ---------------------------------------------------- 41
2.19. Situation of using local plants and exotic plants in Vietnam -------------------------------42
2.20. Heavy metal pollution in soil in mining sites in Thai Nguyen province -----------------43
2.21. Selected plants and theirs applications in rehabilitation in Thai Nguyen province -------------44
2.21.1. Reed plant (Phragmites australis)-------------------------------------------------- 45
2.21.2. Lau plant (Erianthus arundinaceus (Retz.))--------------------------------------- 46
2.21.3. Ryegrass (Lolium multiflorum)------------------------------------------------------ 47
2.22. A risk-based remediation approach ---------------------------------------------------------------47
CHAPTER 3: METHODOLOGY -------------------------------------------------------------------50
3.1. Overview of the research -----------------------------------------------------------------------------50
3.2. Methodologies-------------------------------------------------------------------------------------------50
3.2.1. Study areas ------------------------------------------------------------------------------ 50
3.2.2. Soil and plant sampling---------------------------------------------------------------- 52
3.2.3. Characterisation soil and plants samples------------------------------------------- 54
vii
3.2.4. Treatments------------------------------------------------------------------------------- 55
3.2.5. First incubation experiments---------------------------------------------------------- 55
3.2.6. Preparation------------------------------------------------------------------------------ 56
3.2.7. Second incubation experiment-------------------------------------------------------- 56
3.2.8. Pot experiments in greenhouse ------------------------------------------------------- 56
3.2.9. Field sampling and analyses of plant biomass ------------------------------------ 57
3.2.10. Soil and plant analysis --------------------------------------------------------------- 57
3.2.11. Data processing methods ------------------------------------------------------------ 58
CHAPTER 4: MINE SITE SOIL AND PLANT CHARACTERISATION--------------59
4.1. Introduction ----------------------------------------------------------------------------------------------59
4.2. Materials and methods---------------------------------------------------------------------------------62
4.2.1. Study areas ------------------------------------------------------------------------------ 62
4.2.2. Sample design--------------------------------------------------------------------------- 63
4.2.3. Soil physicochemical properties------------------------------------------------------ 64
4.2.4. Plant sample analyses ----------------------------------------------------------------- 64
4.2.5. The BCF, TF and EF------------------------------------------------------------------- 65
4.2.6. Soil mineralogy ------------------------------------------------------------------------- 66
4.2.7. Statistical analysis---------------------------------------------------------------------- 66
4.3. Results and discussion---------------------------------------------------------------------------------67
4.3.1. Physicochemical parameters of soils ------------------------------------------------ 67
4.3.2. Accumulation factors of HMs for PA and EA -------------------------------------- 70
4.3.3. Soil minerals ---------------------------------------------------------------------------- 74
viii
4.3.4. Correlation between HMs (As, Cd, Cu, Pb and Zn) contents in soil and soil
properties --------------------------------------------------------------------------------------- 76
4.3.5. The influence of soil properties on HMs content levels in EA and PA ---------- 79
4.4. Conclusion------------------------------------------------------------------------------------------------86
CHAPTER 5: CHELATE-ASSISTED ENHANCED HEAVY METAL
BIOAVAILABILITY IN MINED SOILS: A COMPARATIVE STUDY ----------------90
5.1. Introduction ----------------------------------------------------------------------------------------------90
5.2. Materials and methods---------------------------------------------------------------------------------92
5.2.1 Sampling---------------------------------------------------------------------------------- 92
5.2.2. Characterisation------------------------------------------------------------------------ 92
5.2.3. SEM, FTIR and XRD analysis -------------------------------------------------------- 94
5.2.4. Chelate-assisted mobilisation of metals--------------------------------------------- 94
5.3. Results-----------------------------------------------------------------------------------------------------96
5.3.1. Soil properties -------------------------------------------------------------------------- 96
5.3.2. Mineralogical composition of mine soils using XRD------------------------------ 98
5.3.3. SEM of minerals------------------------------------------------------------------------ 99
5.3.4. Chelate metal extraction--------------------------------------------------------------101
5.4. Discussion ---------------------------------------------------------------------------------------------- 103
5.5. Conclusions -------------------------------------------------------------------------------------------- 104
CHAPTER 6: CHELATE-ASSISTED METAL PHYTOAVAILABILITY IN THE
PLANT STUDIES ---------------------------------------------------------------------------------------- 106
6.1. Introduction -------------------------------------------------------------------------------------------- 106
6.2. Hypothesis---------------------------------------------------------------------------------------------- 108
6.3. Materials and methods------------------------------------------------------------------------------- 109
ix
6.3.1. Soil characterisation ------------------------------------------------------------------109
6.3.2. Plant sample analyses ----------------------------------------------------------------110
6.3.3. Pore water analysis -------------------------------------------------------------------111
6.3.4. Soil incubation -------------------------------------------------------------------------111
6.3.5. Plant growth experiment using chelates--------------------------------------------111
6.3.6. Statistical analysis---------------------------------------------------------------------113
6.4. Results and Discussion ------------------------------------------------------------------------------ 114
6.4.1. Physicochemical parameters of soils -----------------------------------------------114
6.4.2. Effects of EDTA, EDDS and NTA in 2 selected doses on plant growth --------115
6.4.3. Effects of EDTA, EDDS and NTA on pore water metal concentration---------118
6.4.4. Effects of EDTA, EDDS and NTA on root and shoot metal concentrations and
phytoextraction--------------------------------------------------------------------------------120
6.4.5. Effects of EDTA, EDDS and NTA on the uptake of HMs by Ryegrass---------124
6.5. Conclusions -------------------------------------------------------------------------------------------- 128
CHAPTER 7: CONCLUSION INCLUDING FUTURE RESEARCH ------------------ 130
7.1. Conclusion---------------------------------------------------------------------------------------------- 130
7.2. Future research ---------------------------------------------------------------------------------------- 133
REFERENCES -------------------------------------------------------------------------------------------- 136
APPENDIX ------------------------------------------------------------------------------------------------- 163
x
LIST OF ABBREVIATIONS
Aloxa, Mnoxa and Feoxa = Ammonium oxalate/oxalic acid extractable Al, Mn, Fe
CEC = Cation exchange capacity
DIC = Dissolved inorganic carbon
DOC = Dissolved organic carbon
EA= Erianthus arundinaceus (Retz.)
EC = Electrical conductivity
EDDS = S,S-ethylenediaminedi-succinic acid
EDS = Energy dispersive X-ray spectroscopy
EDTA = Ethylenediaminetetraacetic acid
FTIR = Fourier Transformed Infrared Spectroscopy
HMs = Heavy metal(loid)s
IC = Inorganic carbon
ICP-MS = Inductively coupled plasma mass spectrometry
MLR = Multiple linear regression
NTA= Nitrilotriacetate
OM = Organic matter
PA= Phragmites australis (Cav.)
PCA = Principal component analysis
SEM = Scanning Electron Microscope
TOC = Total organic carbon
WHC = Water Holding Capacity
XRD = X-ray diffraction
xi
LIST OF FIGURES
Fig. 2.1. The interaction between adsorption reactions of metal(loid)s in soil and their
bioavailability (Naidu and Kim, 2008, Bolan et al., 2014). -----------------------15
Fig. 2.2. Transformation pathways of metalloids in soil ---------------------------------------17
Fig. 2.3. The mechanisms of heavy metals uptake by plant through phytoremediation
technology (Tangahu et al., 2011) ----------------------------------------------------20
Fig. 2.4. Schematic representation of phytoremediation strategies ---------------------------20
Fig. 2.5. Schematic representation of phytoextraction of metals from soil (Favas et al.,
2014) --------------------------------------------------------------------------------------24
Fig. 2.6. Schematic representation of the processes of natural (A) and chelate-assisted
(B) phytoextraction (Favas et al., 2014).---------------------------------------------25
Fig. 2.7. Factors affecting the uptake mechanisms of heavy metals (Tangahu et al.,
2011) --------------------------------------------------------------------------------------29
Fig. 2.8. Uptake mechanisms on phytoremediation technology (ITRC, 2009)--------------33
Fig. 2.9. Mining locations in Thai Nguyen province, Vietnam (Anh et al., 2011)----------40
Fig. 2.10. Risk assessment methodology (CRC CARE, 2018)--------------------------------48
Fig. 3.1. Overview of research methodologies --------------------------------------------------50
Fig. 3.2. Locations of the research mining sites -------------------------------------------------51
Fig. 4.1. (a) Phytoremediation (Favas et al., 2014) (b) Factors affecting the uptake
mechanisms of heavy metals (Tangahu et al., 2011) -------------------------------60
Fig. 4.2. Mining soil sampling at the selected sites in Thai Nguyen province: (a) LH lead
zinc mine site, (b) HT tin mine site, and (c) TC iron mine site (d) PA (e) EA-------62
Fig. 4.3. The average contents of HMs in root, steam and leaf of PA and EA---------------72
Fig. 4.4. XRD results for HT tin mine soil, Ka = kaolinite, Q = quartz, Ar = arsenopyrite, Mu
= muscovite--------------------------------------------------------------------------------74
Fig. 4.5. EDS (a) (b) and SEM (c) results for HT tin mine soil -------------------------------74
xii
Fig. 4.6. XRD (a), EDS (b), SEM (c) results for LH Lead-Zinc mine soil, Q = quartz,
Ca= calcite, Fr = franklinite, Mu = muscovite, Sp = sphalerite, La =
lanarkite, Do = dolomite.---------------------------------------------------------------75
Fig. 4.7. XRD (a), EDS (b), SEM (c) results for TC iron mine soil, Ka = kaolinite , Go
= goethite, Q = quartz , A = anatase , He = hematite, Il = Iilite-------------------75
Fig. 4.8. Correlation among selected HMs (As, Cd, Cu, Pb, and Zn) and the soil pH in three mining
sites-----------------------------------------------------------------------------------------78
Fig. 4.9. Correlation between As and Fe content in HT mine soil ----------------------------79
Fig. 4.10. PCA component plot--------------------------------------------------------------------85
Fig. 5.1. Mining soil and plant sampling sites at the selected sites, corresponding to Ha
Thuong tin mine (HT), Hich Village lead-zinc mine (LH), and Trai Cau iron
mine (TC mine)---------------------------------------------------------------------------93
Fig. 5.2. Microprobe images of minerals in HT sample using SEM--------------------------99
Fig. 5.3. EDS (a) and SEM (b) analysis of the topsoil sample from the HT tin mine ---- 100
Fig. 5.4. EDS (a) and SEM (b) analysis of the topsoil sample from the LH lead-zinc
mine ------------------------------------------------------------------------------------- 100
Fig. 5.5. EDS (a) and SEM (b) analysis of the topsoil sample from the TC iron mine -- 101
Fig. 5.6. Lead extraction in the HT, LH and TC mines--------------------------------------- 102
Fig. 5.7. Zinc extraction in the HT, LH and TC mines --------------------------------------- 102
Fig. 5.8. Cadmium extraction in the HT, LH and TC mines--------------------------------- 103
Fig. 6.1. Plant experiments using chelates and plant toxicity symptoms------------------- 115
Fig. 6.2. Effects of the application of chelates on the fresh weight of ryegrass (Lolium
multiflorum) in three selected mining sites (HT, LH, TC mine). Lower case
letters represent significant difference between treatments---------------------- 116
Fig. 6.3. Effects of EDTA, EDDS and NTA in dry biomass of shoot---------------------- 117
Fig. 6.4. Effects of EDTA, EDDS and NTA in dry biomass of root------------------------ 117
Fig. 6.5. Effects of the application of chelates on the uptake of Cu in the roots and
shoots of the ryegrass. Values are means ± SD (n = 3). Lower case letters
xiii
represent significant difference between treatments for shoots and roots at
each site--------------------------------------------------------------------------------- 124
Fig. 6.6. Effects of the application of chelates on the uptake of Pb in the roots of the
ryegrass. Values are means ± SD (n = 3). Lower case letters represent
significant difference between treatments for shoots and roots at each site. -- 125
Fig. 6.7. Effects of the application of chelates on the uptake of Pb in the shoots of the
ryegrass. Values are means ± SD (n = 3). Different letters indicate
significant (p <0.05) difference with other treatments; values are in the
order: a > b > c)------------------------------------------------------------------------ 125
Fig. 6.8. Effects of the application of chelates on the uptake of As in the roots and
shoots of the ryegrass. Values are means ± SD (n = 3) -------------------------- 126
Fig. 6.9. Effects of the application of chelates on the uptake of Zn in the roots and
shoots of the ryegrass. Values are means ± SD (n = 3). Different letters
indicate significant (p <0.05) difference with other treatments; values are in
the order: a > b > c) ------------------------------------------------------------------- 127