Thư viện tri thức trực tuyến
Kho tài liệu với 50,000+ tài liệu học thuật
© 2023 Siêu thị PDF - Kho tài liệu học thuật hàng đầu Việt Nam

Nouveaux procédés d’hyperdéformation pour produire des tôles fines = New severe plastic deformation processes to obtain sheet products
Nội dung xem thử
Mô tả chi tiết
1
THÈSE
Pour l'obtention du titre de
DOCTEUR DE L'UNIVERSITÉ DE LORRAINE
Spécialité : Mécanique et Matériaux
Présentée par : Viet Quoc VU
Nouveaux procédés d’hyperdéformation pour produire des tôles fines
à partir des métaux massifs
New severe plastic deformation processes to obtain sheet products
from bulk metals
Thèse soutenue publiquement l’aout 28, 2020 à 14h, à l’amphithéâtre UFR MIM (Université de
Lorraine-Metz) devant le jury composé de :
Werner Skrotzki Prof., Technische Universität Dresden, Allemagne Rapporteur
Leo Kestens Prof., Ghent University, Belgique Rapporteur
Valéria Mertinger Prof., University of Miskolc, Hongrie Examinateur
Véronique Doquet HDR, Dir. Recheche, LMS, Ecole Polytechnique, France Examinateur
Roxane Massion Dr., LEM3, Université de Lorraine, France Examinateur
Andras Borbely HDR, Ecole des Mines de Saint Etienne, France Examinateur
Laszlo Toth Prof., LEM3, Université de Lorraine, France Directeur de
thèse
LEM3 /LabEx DAMAS - 7 rue Félix Savart F-57070 METZ, France
Université de Lorraine – Pôle M4: matière, matériaux, métallurgie, mécanique
École doctorale C2MP
1
Abstract
Severe plastic deformation (SPD) has been acclaimed as an effective technique for
producing materials with superior properties such as high mechanical and fatigue strength, high
wear resistance, and superplasticity. A generic feature of SPD processes is that large strain is
imposed on the processed sample, mostly under high hydrostatic pressure, for transforming a
coarse-grained microstructure into an ultrafine-grained or nano-grained microstructure, which are
unattainable by conventional thermo-mechanical processing. In the present thesis, three SPD
processes namely, plastic flow machining (PFM), high pressure compressive shearing (HPCS) and
friction assisted lateral extrusion process (FALEP) are proposed for producing sheet materials.
PFM is a SPD process capable of producing sheet materials with large shear strain from bulk
samples in one single extrusion step with the assistance of high hydrostatic pressure. The process
was tested on Al1050 samples to study imposed strain, microstructure and texture evolutions, and
mechanical properties. The results are: a high-degree deformation gradient was obtained across
the thickness of the produced Al1050 sheet, with shear strain ranging from 2.5 to 10; UFG
microstructures and simple shear textures with gradient across the thickness of the produced sheet
were presented; the tensile strength of the sheet increased by about a factor of three with a total
elongation of 20%; the average Lankford parameter of the sheet was 0.92, which is much higher
than conventional aluminum sheets obtained by rolling. Modelling and simulation work on PFM
were focused in two parts: mechanical and texture modelling. In the first part, an analytical model
accompanied by finite element simulations was established to gain insight the formation of the
Al1050 sheet under the loading conditions and die geometry. This modelling and simulation set
was able to predict the lateral extrusion ratio and the effect of the applied back pressure and die
geometry on the formation of the sheet and it produced results in agreement with the experiment.
In the second modelling and simulation set, for texture evolution, first, a strain path model was
established; then, two modelling approaches, including viscoplastic self-consistent (VPSC) and
grain fragmentation (GR) were employed for various strain zones across the produced sheet. The
results showed that in the lowest strain zone, the VPSC model produced good agreement with
experiment for the texture. At large strains, the GR model was successful for reproducing the
experimental texture, indicating the importance of incorporating grain fragmentation into large
strain polycrystal modeling. The second proposed SPD technique in thesis was the HPCS; a variant
i
2
of the high pressure sliding (HPS) process. In this thesis, HPCS was applied to ARMCO® steel in
an apparatus in which the shear force, normal force, and shearing distance could be monitored to
allow the stress-strain response to be measured in situ into the steady state work hardening regime.
The results were: the applied compression stress did not result in a purely hydrostatic stress state
in HPCS; the deviatoric stress state progressively approached the simple shear stress state as a
function of strain; the steady state of strain hardening at 1150 MPa, defining a point on the Derbyplot of dynamic recrystallization; the microstructure features revealed the occurrence of dynamic
recrystallization in the steady state, at room temperature; the grain size was reduced by about a
factor of 170 upon reaching steady state flow conditions; a characteristic bcc simple shear texture
was found; the produced microstructure and texture were uniform throughout the thickness of the
samples. The last studied SPD process was FALEP, a SPD technique in which a bulk sample is
extruded laterally through a channel die with assistance of a friction force to form a sheet with
extremely high plastic imposed strain under high hydrostatic pressure. It was applied to Al1050
bulk samples to produce sheets with very imposed high strain which led to a significant grain
refinement in which the grain size was reduced more than 160 times; to 600 nm after processing.
The produced Al1050 sheet also showed a significant increase in yield strength: by about five
times, and a remarkably high formability with R-value of 1.33, which is exceptionally high for
aluminum.
Key words
Severe plastic deformation (SPD); Plastic flow machining (PFM); High pressure compressive
shearing (HPCS); Friction assisted lateral extrusion process (FALEP); Microstructure evolution;
Mechanical modelling; Texture evolution modeling
ii
3
Résumé
L’hyperdéformation (SPD) a été reconnue comme une technique efficace pour produire
des matériaux avec des propriétés supérieures, telles que la résistance mécanique et de fatigue
élevée, meilleur résistance à l’usure, et la superplasticité. Une caractéristique générique des
processus de HD est qu’une extrême déformation est imposée sur l’échantillon, la plupart du temps
sous haute pression hydrostatique, pour transformer la microstructure initiale dans une
microstructure à grain ultrafin, voir nano, qui sont inaccessibles par les traitement
thermomécaniques conventionnels. Dans cette thèse, trois HP procédés, à savoir : l’usinage
plastique (PFM), le cisaillement compressif à haute pression (HPCS) et le processus d’extrusion
latérale assistée par frottement (FALEP), sont proposés pour la production des matériaux en forme
d’une tôle.
PFM est un procédé SPD capable de produire des matériaux en forme de tôle avec une
grande déformation en cisaillement, à partir d’échantillons massifs dans une seule étape
d’extrusion à l’aide d’une pression hydrostatique élevée. Le procédé a été testé sur des échantillons
d’Al1050 pour étudier les évolutions imposées par la déformation ; concernant la microstructure
et de la texture, ainsi que les propriétés mécaniques. Les résultats obtenus sont : un gradient élevé
de déformation a été obtenu à travers l’épaisseur de la feuille Al1050 produite, avec une valeur de
cisaillement allant de 2,5 à 10; des microstructures UFG et des textures simples de cisaillement
avec un gradient à travers l’épaisseur de la feuille produite, la résistance mécanique a augmenté
d’environ un facteur de trois avec un allongement total de 20%; le paramètre Lankford de la feuille
était de 0,92, ce qui est beaucoup plus élevé que les feuilles d’aluminium conventionnelles
obtenues par laminage.
Les travaux de modélisation et de simulation sur PFM ont été concentrés en deux parties
sur : de la modélisation mécanique, et de la texture. Dans la première partie, un modèle analytique
accompagné de simulations d’éléments finis a été mis en place pour mieux comprendre la
formation de la tôle Al1050 sous chargement pour la géométrie de la matrice. Les modélisations
et simulations ont été en mesure de prédire le rapport d’extrusion latérale et l’effet de la pression
arrière appliquée en fonction de la géométrie de la matrice sur la formation de la tôle et ils ont
produit des résultats en accord avec des expériences. Dans le deuxième ensemble de modélisation
iii
4
et de simulation, pour l’évolution de la texture, tout d’abord, un modèle de mode de déformation
a été établi ; puis, deux approches de modélisations ; a viscoplastique auto-cohérente (VPSC) et la
fragmentation des grains (GR) ont été employées pour les zones de déformation à travers la tôle
produite.
Les résultats ont montré que dans la zone de la plus faible déformation, le modèle VPSC a
produit un bon accord avec l’expérience pour la texture. Aux plus grandes déformations, c’est le
modèle GR qui a réussi à reproduire la texture expérimentale, ce qui indique l’importance
d’intégrer la fragmentation des grains dans la modélisation polycrystal à grande déformation. La
deuxième SPD technique proposée dans la thèse était le HPCS; une variante du processus de
glissement à haute pression (HPS). Dans cette thèse, l’HPCS a été appliqué à l’acier ARMCO®
dans un appareil dans lequel la force de cisaillement, la force normale, et le déplacement pouvaient
être mesurés pour pouvoir construire la courbe de contrainte-déformation in situ y compris le
régime stationnaire de durcissement.
Les résultats obtenus : la contrainte de compression appliquée n’a pas produit un état de
contrainte purement hydrostatique dans l’HPCS ; l’état de stress déviatorique s’est
progressivement approché l’état de cisaillement simple en fonction de la déformation ; le stade
stationnaire du durcissement à 1150 MPa définissait un point sur le Derby-plot de la
recristallisation dynamique; les caractéristiques de la microstructure ont indiqué l’occurrence de
la recristallisation dynamique dans le stade stationnaire à température ambiante ; la taille du grain
a été réduite d’environ 170 fois dans le stade stationnaire; une texture bcc de cisaillement simple
caractéristique a été trouvée ; la microstructure et la texture produites étaient uniformes tout au
long de l’épaisseur des échantillons.
Le dernier SPD procédé étudié était le FALEP, une technique SPD dans laquelle un
échantillon massif est extrudé latéralement avec l’aide d’une force de friction pour former une tôle
avec une déformation plastique extrêmement grande sous une pression hydrostatique élevée. Le
FALEP a été appliqué à des échantillons massif d’Al1050 pour produire des tôles à très grande
déformation, ce qui a entraîné un raffinement important des grains jusqu’au une taille du grain plus
de 160 fois plus petite ; à 600 nm. La tôle d’Al1050 présentait également une augmentation très
iv
5
significative de la résistance : d’environ cinq fois, et une formabilité remarquablement élevée avec
la valeur R de 1,33, ce qui est exceptionnellement élevé pour l’aluminium.
v
6
Acknowledgements
First and foremost, I would like to express my sincere gratitude and heartfelt thanks to my
supervisor, professor Laszlo TOTH, for his tremendous guidance and inspiration throughout my
thesis work. His continuous and friendly guidance has helped me a lot in constantly improving and
expanding my scientific knowledge and research skills. Not only that, he also trained me to play
ping pong and practiced with me on a regular basis. This helped me to stay strong physically and
mentally to become more effective, productive and consistent in learning and researching. His
liveliness and enthusiasm in sports and sharpness in science are a great inspiration for me to grow
stronger and better in life and research. I feel very fortunate to have him as my PhD supervisor.
I am very grateful Professor Yan Beygelzimer who gave me a great deal of help in
developing some mechanical modelling and calculations. I am also thankful Dr. Roman Kulagin
for his great help in some finite element calculations. My thanks should also go to Dr. Jean-Jacques
Fundenberger, Dr. Yajun Zhao and Dr. Cai Chen for their support and cooperation to facilitate my
research work.
I highly appreciate the special help given by Dr. Olivier Perroud, Dr. Julien Guyon, Dr.
Yudong Zhang and Mr. Patrick Moll for their training and help in X-ray diffraction, Microscopy
and tensile testing measurements.
A friendly and supportive working environment always plays an important role at
workplace. I really appreciate many colleagues and friends in LEM3 laboratory for their support
and friendship during my time in the lab. They are Dr. Benoit Beausir, Mrs. Nathalie Niclas, Mrs.
Arlette Jacquiere, Professor Eric Fleury, Dr. Laurent Weiss, Mr. Julien Oury, Dr. Marc Novelli,
Dr. Subrata Panda, Dr. Satyaveer Dhinwal, Mr. Surya N. Kumaran, Mr. Pariyar Abhishek, Dr.
Sudeep Sahoo, Dr. Zhang Chi, Ms. Qiang Chen, Mr. Hailong…I could not mention all of the
names here, but I will remember all of you as very nice colleagues and friends.
I would like to sincerely appreciate all the thesis examiners and reviewers for taking their
time to examine and review this thesis work.
Finally, I would like to thank my family for their unconditional love and support throughout
my PhD study.
vi
7
Contents
Abstract......................................................................................................................i
Résumé .................................................................................................................... iii
Acknowledgements..................................................................................................vi
Table of contents ................................................................................................... vii
List of figures............................................................................................................x
List of tables...........................................................................................................xiv
Introduction..............................................................................................................1
Chapter 1 Literature review ...................................................................................3
1.1 History of SPD ......................................................................................................................3
1.2 Main SPD methods...............................................................................................................4
1.2.1 Equal channel angular pressing (ECAP)......................................................................4
1.2.2 High pressure torsion (HPT) .........................................................................................8
1.2.3 Accumulative roll bonding (ARB) ...............................................................................10
1.3 Other SPD processes..........................................................................................................12
1.4 Change in microstructure during SPD processing .........................................................19
1.4.1 Change in grain shape .................................................................................................19
1.4.2 Grain refinement during SPD processing ...................................................................21
1.4.3 Change in disorientation distribution function (DDF)...............................................23
1.5 Change in crystallographic texture during SPD processing ..........................................27
1.5.1 Introduction of texture .................................................................................................27
1.5.2 Texture evolution during plastic deformation.............................................................28
1.5.3 Kinematics of deformation for orientation change .....................................................28
1.5.4 Modelling texture of polycrystals during plastic deformation ...................................31
1.5.4.1 Taylor model...................................................................................................................31
1.5.4.2 Static model....................................................................................................................32
1.5.4.3 Viscoplastic self-consistent (VPSC)............................................................................33
1.5.4.4 Grain fragmentation (GR) model................................................................................33
1.5.5 Texture evolution during SPD processing...................................................................36
1.6 Chapter conclusions...........................................................................................................42
vii
8
Chapter 2 Plastic flow machining – Microstructure, strain estimation, texture
and mechanical properties....................................................................................45
2.1 Introduction ........................................................................................................................45
2.2 Working principles and experimental procedures..........................................................45
2.2.1 Working principles of PFM .........................................................................................45
2.2.2 Experimental procedures .............................................................................................47
2.3 Results and discussion........................................................................................................48
2.3.1 Microstructure evolution..............................................................................................48
2.3.2 Texture evolution..........................................................................................................50
2.3.3 Mechanical properties..................................................................................................53
2.3.4 Formability....................................................................................................................53
2.4 Chapter conclusions...........................................................................................................55
Chapter 3 Plastic flow machining (PFM) – Mechanical modelling ..................57
3.1 Introduction ........................................................................................................................57
3.2 Lateral extrusion ratio and experimental results............................................................57
3.3 Numerical simulation of the PFM process.......................................................................62
3.4 Analytical modeling of the PFM process..........................................................................64
3.4.1 Model for the lateral extrusion ratio............................................................................65
3.4.2 Model for the strain gradient .......................................................................................71
3.5 Discussion............................................................................................................................74
3.6 Chapter conclusions...........................................................................................................78
Appendix A: Power dissipation by friction............................................................................78
Appendix B: Minimization of the total power for obtaining the x value ............................81
Chapter 4 Plastic flow machining (PFM) – Texture modelling.........................83
4.1 Introduction ........................................................................................................................83
4.2 Strain path model...............................................................................................................83
4.3 Polycrystal texture modelling............................................................................................86
4.3.1 VPSC approach.............................................................................................................86
4.3.2 Defining the initial texture and initial grain shape inputs .........................................87
4.3.3 Defining strain hardening parameters ........................................................................89
4.3.4 The grain fragmentation model ...................................................................................91
4.3.5 Defining the input velocity gradient tensors................................................................92
4.3.6 Simulation implementation ..........................................................................................93
viii
9
4.4 Results and discussion........................................................................................................94
4.5 Chapter conclusions.........................................................................................................100
Chapter 5 The high pressure compressive shearing process...........................101
5.1 Introduction ......................................................................................................................101
5.2 Working principles and experimental setup..................................................................102
5.3 The mechanics of HPCS ..................................................................................................103
5.4 Experimental procedures ................................................................................................108
5.5 Experimental results........................................................................................................110
5.6 Discussion..........................................................................................................................115
5.7 Chapter conclusions.........................................................................................................121
Appendix: Conversion of the Hencky strain into shear strain...........................................122
Chapter 6 The friction assisted lateral extrusion process (FALEP)...............124
6.1 Introduction ......................................................................................................................124
6.2 Working principles...........................................................................................................124
6.3 Strain estimation ..............................................................................................................126
6.4 Example for application of the FALEP on commercially pure aluminum (Al-1050)126
6.4.1 Experimental setup.....................................................................................................126
6.4.2 Microstructure evolution............................................................................................128
6.4.3 Texture evolution........................................................................................................130
6.4.4 Mechanical properties................................................................................................131
6.4.5 Lankford parameter....................................................................................................132
6.5 Chapter conclusions.........................................................................................................133
Thesis conclusions................................................................................................135
Perspectives...........................................................................................................138
References.............................................................................................................139
ix
10
List of figures
Fig. 1.1: Schematic illustration of the ECAP working principle.....................................................5
Fig. 1.2: Schematic of the four processing ECAP routes................................................................6
Fig. 1.3: Schematic of the change in the shear plane in four ECAP routes for two cases: a) = 90
and b) = 120................................................................................................................................7
Fig. 1.4: Schematic of HPT working principle................................................................................9
Fig. 1.5: Schematic of ARB working principle .............................................................................10
Fig. 1.6: Microstructure of commercially pure aluminum (Al1050) after shear of 4 by HPTT. Black
lines and gray lines depict disorientations of 15 and 5, respectively .........................................20
Fig. 1.7: An illustration of the formation of geometrically necessary dislocations (GNDs),
statistically stored dislocations, geometrically necessary boundaries (GNBs) and incidental
dislocation boundaries (IDBs) .......................................................................................................21
Fig. 1.8: Microstructures of pure copper deformed by ECAP: (a-c) and HPTT (d) at different levels
........................................................................................................................................................23
Fig. 1.9: Grain-to-grain DDF in comparison with pixel-to-pixel DDF in copper processed by three
ECAP passes..................................................................................................................................24
Fig. 1.10: The grain-to-grain DDF as the function of strain for commercially pure aluminum
processed by HPTT........................................................................................................................26
Fig. 1.11: The shear strain as a function of HAGBs fraction for commercially pure aluminum
during simple shear deformation ...................................................................................................26
Fig. 1.12: Decomposition of deformation gradient in large strain theory .....................................29
Fig. 1.13: A shape change from ABCD to A’B
’C
’D
’
of a grain caused by the slip system (n,b). (a-b):
without geometrical constraint and (c): under geometrical constraint. This shape change causes
deformation and rotation of the crystal ............................................................................................29
Fig. 1.14: Shear direction is parallel to slip plane and slip direction, leading to no lattice rotation....30
Fig. 1.15: An illustration of lattice curvature within a grain .........................................................34
Fig. 1.16: An illustration of a cube-shaped grain subdivided into 27 subgrains. The arrows
represent the resultant addition to the lattice rotation for each subgrain. The second and third levels
of subdivision is demonstrated for the cube element at the top corner..........................................35
Fig. 1.17: (a): (111) pole figure displaying the ideal orientations of FCC metals and (b): (110) pole
figure showing the ideal orientations of BCC metals under simple shear deformation ................38
Fig. 1.18: (a): (0002) and
(1010)
pole figures displaying the ideal orientations of HCP metals
under simple shear deformation.....................................................................................................39
Fig. 1.19: Texture evolution of Al1050 processed by HPT at different equivalent strains: a): 0.75,
b): 1.5, c): 3.89, d): 5.31, e): 7.97, f): 11.9, g): 14.85, h): 17.8, i): 99...........................................41
Fig. 1.20: Texture evolution of AA5086 during HPTT as shear strain progresses from 4 to 24…42
Fig. 2.1: (a): Schematic of the principle of the PFM process and (b): a workpiece after processing.
(FD: flow direction, PD: pressing direction and TD: transverse direction)...................................46
Fig. 2.2: Microstructures of (a): initial sample, (b, d, e and f): the 0.65 mm thickness fin and (c):
the top part of the bulk on the plane TD of a deformed sample. ...................................................49
x
11
Fig. 2.3: Next-neighbor grain disorientation distributions for the LSA, MSA and HSA regions of
the fin. For better precision, the data were obtained from large size EBSD maps not from the small
maps shown in Figs. 2.2d-f............................................................................................................50
Fig. 2.4: (111) pole figures for the (a): initial sample, (c): LSA of the fin, (e): MSA of the fin, (g):
HSA of the fin and (i): top part of the deformed bulk. ODF sections are shown for (d): LSA, (f):
MSA, (h): HSA of the fin and (k): top part of the deformed bulk.................................................52
Fig. 2.5: (a): Geometry of tensile specimens. (b) and (c): Engineering stress-strain curves obtained
in tensile tests at 0, 45 and 90 relative to the flow direction (FD) for the initial sample and for
the fin of 0.65 mm thickness. (d) and (e): Vickers hardness measured on the plane TD of the fin
and on the top part of the deformed bulk sample...........................................................................54
Fig. 3.1: Working principles of the PFM process. (a): die geometry, (b): metal flow ..................58
Fig. 3.2: The dependence of the lateral extrusion ratio on the gap-width, for a back-pressure (BP)
of 110 MPa and also without back-pressure..................................................................................60
Fig. 3.3: Results of finite element simulations of the PFM process for the parameters: H0=20 mm;
H1=18 mm; α=120°. The magnitudes of the velocity, strain rate and effective strain (equivalent
strain) are indicated by the respective color codes. (The maximum value of the equivalent strain is
about 4 in all cases)........................................................................................................................64
Fig. 3.4: Schematic of a kinematically admissible velocity field for the flow into the lateral channel
showing the dead metal zone (a). The velocity hodograph is shown in (b)...................................67
Fig. 3.5: The lateral extrusion ratio x as the function of the displacement L1 of the back-pressure
punch for four values of the gap-width h.......................................................................................71
Fig. 3.6: A kinematically admissible velocity field composed of three rigid blocks for the analysis
of the strain distribution in the fin. (a): The rigid blocks with the velocity discontinuity line
segments are identified by 1, 2, 3. Left to the OCB line the material moves with the velocity
U0
.
The ABC triangle is moving with the velocity
U . Above the OCA segment the material moves
with velocity
U2
. α is the die angle and
is the abscissa of the point C. (b): the velocity hodograph
along the CB segment ....................................................................................................................72
Fig. 3.7: The characteristics of the strain distribution for Mode 2, obtained by the analytical model
(continuous lines), and by FE simulations (red dots) for the die angle
0 =120
and for the friction
value of
m = 0.2 . (a): The predicted width of Zone I. (b): The von Mises strain in Zone I. (c): The
von Mises strain in Zone II............................................................................................................74
Fig. 3.8: The dependence of the lateral extrusion ratio on the
h r
parameter in the experiments
with back pressure of 110 MPa, by finite element simulations and also by the analytical model.
........................................................................................................................................................75
Fig. 3.9: The conditional boundaries of the metal flows for the three possible PFM modes: Mode
1:
P P BP BP 1
; Mode 2:
P P P BP BP BP 1 2
; Mode 3:
P P BP BP 2
........................................................76
Fig. A1. The method of slices showing schematically the stress distribution...............................79
Fig. 4.1: (a): Von Mises strain distribution from finite element simulation. b: Simplified schematic
of the three deformation zones: LSA, MSA, HSA. c: The velocity field from finite elements
together with the reference systems of local shears.......................................................................85
xi
12
Fig. 4.2: (a-b): The initial microstructures of Al1050 on the TD-plane and FD-planes, respectively.
(c): The measured {111} pole figure of the initial microstructure on the TD-plane. (d): The {111}
pole figure of 8000 initial grain orientations reproduced from the initial texture for the simulation
input used in the VPSC modelling. (e): The {111} pole figure of the 1000 initial grain orientations
used as initial grains in the grain fragmentation modelling...........................................................88
Fig. 4.3: (a): The geometry of the Al1050 sample subjected to free-end torsion test. (b): The strain
hardening curve in simple shear deformation in the free end torsion test, with a comparison
between simulation and experiment...............................................................................................90
Fig. 4.4: {111} pole figures for LSA, MSA and HSA obtained from experiment and from
simulations using the VPSC and GR modelling ...........................................................................98
Fig. 4.5: ODF sections for LSA, MSA and HSA obtained from experiment and from simulations
using the VPSC and GR modelling. The reference system is the fix XYZ sample system...........99
Fig. 5.1: (a): Schematic figure for the experimental HPCS setup. (b): The two samples after the
first pass deformation ..................................................................................................................102
Fig. 5.2: Schematic figure showing the dimensions and the forces applied on the upper specimen
......................................................................................................................................................104
Fig. 5.3: The initial grain-state of the material (a) and its crystallographic texture in a {110} pole
figure (b) ......................................................................................................................................110
Fig. 5.4: Stress–strain curves obtained by HPCS for ARMCO® steel in three consecutive passes
up to an equivalent strain of 33.34...............................................................................................110
Fig. 5.5: (a)-(b): IPF maps after the first and third passes. (c)-(d): Ellipticity and grain size
distributions. (e)-(f): Next-neighbor disorientation distributions................................................112
Fig. 5.6: The crystallographic textures in {110} pole figures, and the ODFs in two sections of the
Euler orientation space (top row: 2=0°, bottom row: 2=45°). SPN and SD denote the orientations
of the shear plane normal and the shear direction, respectively ..................................................114
Fig. 5.7: (a): The evolution of the non-zero stress components of the stress tensor during HPCS of
ARMCO® steel during the first pass. The value of the hydrostatic stress
h
is equal to
33
. The
curve indicated by
is the shear stress. is the ratio of the deviator stresses corresponding to the
compression and the shear. (b): The shear and compression strains as a function of the equivalent
strain during the first pass. (c): The rate of strain hardening as a function of stress (‘Kocks-Mecking
plot’) from (a). (d): The evolution of the stress state during HPCS of ARMCO® steel in the S11-S12
section of the von Mises yield surface.........................................................................................116
Fig. 6.1: Schematic of the FALEP process..................................................................................125
Fig. 6.2: Experimental setup (a) and (b), and example of a half-extruded Al-1050 sample (c)…127
Fig. 6.3: (a): Experimental setup for T-NECAP for Al-1050. (b): The sample obtained after
processing ....................................................................................................................................128
Fig. 6.4: (a): EBSD microstructure of the initial sample; (b): SEM microstructure across the
thickness of the produced fin; (c), (d) and (e): EBSD microstructures of the bottom, middle and
top areas of the Al-1050 produced fin, respectively ....................................................................129
Fig. 6.5: Next-neighbor grain disorientation distributions measured in the top, middle and bottom
areas of the Al-1050 produced fin ...............................................................................................130
xii
13
Fig. 6.6: Crystallographic texture for the initial sample (a), key figure (b) for the ODFs sections
in (d): pole figure (c) and ODF (d) after FALEP processing.......................................................130
Fig. 6.7: (a): Engineering tensile stress-strain curves of the initial sample and the FALEPprocessed 1 mm thickness Al-1050 fin obtained at 0°, 45° and 90° with respect to the flow direction
(FD), at room temperature. (b): The geometry of the tensile specimens.....................................131
xiii
14
List of tables
Table 1.1: Geometrical changes, total reduction and accumulated equivalent strain in a series of
ARB passes of two pieces of 1-mm-thick strip .............................................................................11
Table 1.2: SPD processes developed from the ECAP technique ..................................................13
Table 1.3: SPD processes developed from the HPT technique.....................................................15
Table 1.4: Some rolling-based SPD processes..............................................................................17
Table 1.5: Direct-extrusion-based SPD processes ........................................................................18
Table 1.6: Machining-based SPD process.....................................................................................19
Table 1.7: Ideal texture orientations with Euler angles for different crystal structures: FCC, BCC
and HCP in simple shear deformation ...........................................................................................37
Table 2.1: Ideal orientations of simple shear textures for FCC materials. (hkl) is perpendicular to
the shear plane and [uvw] is parallel to the shear direction...........................................................51
Table 2.2: R values measured in PFM processed CP aluminum ..................................................55
Table 4.1: Directions and shear strains of the various shear planes in the deformation zone. The
shear strain values were obtained from the shear formula (Eq. 4.1), except for the friction-induced
shears, indicated by *, which were estimated from the simulations..............................................85
Table 4.2: Shear plane sequences and accumulated total shears for the three shear zones ..........86
Table 4.3: Orientations of the experimental and simulated textures in the different deformation
zones as defined by the rotation angles between the FD sample axis and the shear plane (SP)
identified in the pole figures of Fig. 4.4. (The values are in degrees.) ..........................................95
Table 5.1: The equivalent strain and the sample thickness in multipass HPCS for the initial
geometry
0
t
=2 mm,
0
l
=10 mm and a shear displacement
s
=10 mm........................................ 108
Table 5.2: The parameters of the multi-pass HPCS testing on ARMCO® steel ........................109
Table 5.3: Average grain sizes obtained after HPCS of ARMCO® steel. Unit is [nm]..............111
Table 5.4: The Miller indices of the main ideal orientations of simple shear textures for BCC
materials and their location in the 2=45° section of Euler orientation space (for shear in direction
of axis 1 and with shear plane normal oriented in direction 2)....................................................115
xiv