Thư viện tri thức trực tuyến
Kho tài liệu với 50,000+ tài liệu học thuật
© 2023 Siêu thị PDF - Kho tài liệu học thuật hàng đầu Việt Nam

Nonlinear programming : concepts, algorithms, and applications to chemical processes
Nội dung xem thử
Mô tả chi tiết
Nonlinear
Programming
MP10_Biegler_FM-A.indd 1 7/6/2010 11:34:54 AM
This series is published jointly by the Mathematical Optimization Society and the Society for
Industrial and Applied Mathematics. It includes research monographs, books on applications,
textbooks at all levels, and tutorials. Besides being of high scientific quality, books in the series
must advance the understanding and practice of optimization. They must also be written clearly
and at an appropriate level.
Editor-in-Chief
Thomas Liebling
École Polytechnique Fédérale de Lausanne
Editorial Board
William Cook, Georgia Tech
Gérard Cornuejols, Carnegie Mellon University
Oktay Gunluk, IBM T.J. Watson Research Center
Michael Jünger, Universität zu Köln
C.T. Kelley, North Carolina State University
Adrian S. Lewis, Cornell University
Pablo Parrilo, Massachusetts Institute of Technology
Daniel Ralph, University of Cambridge
Éva Tardos, Cornell University
Mike Todd, Cornell University
Laurence Wolsey, Université Catholique de Louvain
Series Volumes
Biegler, Lorenz T., Nonlinear Programming: Concepts, Algorithms, and Applications to
Chemical Processes
Shapiro, Alexander, Dentcheva, Darinka, and Ruszczynski, Andrzej, Lectures on Stochastic
Programming: Modeling and Theory
Conn, Andrew R., Scheinberg, Katya, and Vicente, Luis N., Introduction to Derivative-Free
Optimization
Ferris, Michael C., Mangasarian, Olvi L., and Wright, Stephen J., Linear Programming with MATLAB
Attouch, Hedy, Buttazzo, Giuseppe, and Michaille, Gérard, Variational Analysis in Sobolev
and BV Spaces: Applications to PDEs and Optimization
Wallace, Stein W. and Ziemba, William T., editors, Applications of Stochastic Programming
Grötschel, Martin, editor, The Sharpest Cut: The Impact of Manfred Padberg and His Work
Renegar, James, A Mathematical View of Interior-Point Methods in Convex Optimization
Ben-Tal, Aharon and Nemirovski, Arkadi, Lectures on Modern Convex Optimization: Analysis,
Algorithms, and Engineering Applications
Conn, Andrew R., Gould, Nicholas I. M., and Toint, Phillippe L., Trust-Region Methods
MOS-SIAM Series on Optimization
´
MP10_Biegler_FM-A.indd 2 7/6/2010 11:34:54 AM
Nonlinear
Programming
Concepts, Algorithms, and
Applications to Chemical Processes
Lorenz T. Biegler
Carnegie Mellon University
Pittsburgh, Pennsylvania
Society for Industrial and Applied Mathematics
Philadelphia
Mathematical Optimization Society
Philadelphia
MP10_Biegler_FM-A.indd 3 7/6/2010 11:34:54 AM
Copyright © 2010 by the Society for Industrial and Applied Mathematics and the Mathematical
Optimization Society
10 9 8 7 6 5 4 3 2 1
All rights reserved. Printed in the United States of America. No part of this book may be reproduced,
stored, or transmitted in any manner without the written permission of the publisher. For information,
write to the Society for Industrial and Applied Mathematics, 3600 Market Street, 6th Floor, Philadelphia,
PA 19104-2688.
Trademarked names may be used in this book without the inclusion of a trademark symbol. These
names are used in an editorial context only; no infringement of trademark is intended.
AIMMS is a registered trademark of Paragon Decision Technology B.V.
AMPL is a trademark of AMPL Optimization LLC.
Excel is a trademark of Microsoft Corporation in the United States and/or other countries.
GAMS is a trademark of Gams Development Corp.
gPROMS is a trademark of Process Systems Enterprise, Ltd.
MATLAB is a registered trademark of The MathWorks, Inc. For MATLAB product information, please
contact The MathWorks, Inc., 3 Apple Hill Drive, Natick, MA 01760-2098 USA, 508-647-7000,
Fax: 508-647-7001 [email protected], www.mathworks.com.
TOMLAB is a registered trademark of Tomlab Optimization.
Library of Congress Cataloging-in-Publication Data
Biegler, Lorenz T.
Nonlinear programming : concepts, algorithms, and applications to chemical processes / Lorenz T.
Biegler.
p. cm.
Includes bibliographical references and index.
ISBN 978-0-898717-02-0
1. Chemical processes. 2. Nonlinear programming. I. Title.
TP155.75.B54 2010
519.7’6--dc22 2010013645
is a registered trademark.
MP10_Biegler_FM-A.indd 4 7/6/2010 11:34:54 AM
In memory of my father
To my mother
To Lynne and to Matthew
To all my students
MP10_Biegler_FM-A.indd 5 7/6/2010 11:34:54 AM
book_tem
2010/7/27
page vii
✐
✐
✐
✐
✐
✐
✐
✐
Contents
Preface xiii
1 Introduction to Process Optimization 1
1.1 Scope of Optimization Problems .................... 1
1.2 Classification of Optimization Problems ................ 3
1.3 Optimization Applications in Chemical Engineering .......... 5
1.4 Nonlinear Programming Examples in Chemical Engineering ...... 6
1.4.1 Design of a Small Heat Exchanger Network ....... 7
1.4.2 Real-Time Optimization of a Distillation Column .... 9
1.4.3 Model Predictive Control . . . . . . . . . . . . . . . . . 11
1.5 A Motivating Application . . . . . . . . . . . . . . . . . . . . . . . . 13
1.6 Summary and Notes for Further Reading . . . . . . . . . . . . . . . . 15
1.7 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2 Concepts of Unconstrained Optimization 17
2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
2.2 Basic Concepts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
2.2.1 Vectors and Matrices . . . . . . . . . . . . . . . . . . . . 19
2.2.2 Quadratic Forms . . . . . . . . . . . . . . . . . . . . . . 22
2.2.3 Classification of Functions . . . . . . . . . . . . . . . . . 25
2.3 Optimality Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . 27
2.4 Algorithms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
2.4.1 Direct Search Methods . . . . . . . . . . . . . . . . . . . 30
2.4.2 Methods That Require Derivatives . . . . . . . . . . . . 33
2.5 Summary and Notes for Further Reading . . . . . . . . . . . . . . . . 37
2.6 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
3 Newton-Type Methods for Unconstrained Optimization 39
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
3.2 Modification of the Hessian Matrix . . . . . . . . . . . . . . . . . . . 40
3.3 Quasi-Newton Methods . . . . . . . . . . . . . . . . . . . . . . . . . 42
3.4 Line Search Methods . . . . . . . . . . . . . . . . . . . . . . . . . . 46
3.5 Trust Region Methods . . . . . . . . . . . . . . . . . . . . . . . . . . 52
3.5.1 Convex Model Problems . . . . . . . . . . . . . . . . . 53
3.5.2 Nonconvex Model Problems . . . . . . . . . . . . . . . . 56
vii
book_tem
2010/7/27
page viii
✐
✐
✐
✐
✐
✐
✐
✐
viii Contents
3.6 Summary and Notes for Further Reading . . . . . . . . . . . . . . . . 60
3.7 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
4 Concepts of Constrained Optimization 63
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
4.1.1 Constrained Convex Problems . . . . . . . . . . . . . . . 64
4.2 Local Optimality Conditions—A Kinematic Interpretation . . . . . . . 68
4.3 Analysis of KKT Conditions . . . . . . . . . . . . . . . . . . . . . . 72
4.3.1 Linearly Constrained Problems . . . . . . . . . . . . . . 75
4.3.2 Nonlinearly Constrained Problems . . . . . . . . . . . . 76
4.3.3 Second Order Conditions . . . . . . . . . . . . . . . . . 79
4.4 Special Cases: Linear and Quadratic Programs . . . . . . . . . . . . . 84
4.4.1 Description of Linear Programming . . . . . . . . . . . . 84
4.4.2 Description of Quadratic Programming . . . . . . . . . . 85
4.4.3 Portfolio Planning Case Study . . . . . . . . . . . . . . . 86
4.5 Summary and Notes for Further Reading . . . . . . . . . . . . . . . . 89
4.6 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90
5 Newton Methods for Equality Constrained Optimization 91
5.1 Introduction to Equality Constrained Optimization . . . . . . . . . . . 91
5.2 Newton’s Method with the KKT Matrix . . . . . . . . . . . . . . . . 92
5.2.1 Nonsingularity of KKT Matrix . . . . . . . . . . . . . . 94
5.2.2 Inertia of KKT Matrix . . . . . . . . . . . . . . . . . . . 95
5.3 Taking Newton Steps . . . . . . . . . . . . . . . . . . . . . . . . . . 96
5.3.1 Full-Space Newton Steps . . . . . . . . . . . . . . . . . 96
5.3.2 Reduced-Space Newton Steps . . . . . . . . . . . . . . . 99
5.4 Quasi-Newton Methods . . . . . . . . . . . . . . . . . . . . . . . . . 102
5.4.1 A Quasi-Newton Full-Space Method . . . . . . . . . . . 103
5.4.2 A Quasi-Newton Reduced-Space Method . . . . . . . . . 105
5.5 Globalization for Constrained Optimization . . . . . . . . . . . . . . 109
5.5.1 Concepts of Merit Functions . . . . . . . . . . . . . . . . 109
5.5.2 Filter Method Concepts . . . . . . . . . . . . . . . . . . 112
5.5.3 Filter versus Merit Function Strategies . . . . . . . . . . 113
5.6 Line Search Methods . . . . . . . . . . . . . . . . . . . . . . . . . . 114
5.6.1 Line Search with Merit Functions . . . . . . . . . . . . . 115
5.6.2 Line Search Filter Method . . . . . . . . . . . . . . . . . 119
5.7 Trust Region Methods . . . . . . . . . . . . . . . . . . . . . . . . . . 122
5.7.1 Trust Regions with Merit Functions . . . . . . . . . . . . 123
5.7.2 Filter Trust Region Methods . . . . . . . . . . . . . . . . 126
5.8 Combining Local and Global Properties . . . . . . . . . . . . . . . . 128
5.8.1 The Maratos Effect . . . . . . . . . . . . . . . . . . . . . 128
5.9 Summary and Conclusions . . . . . . . . . . . . . . . . . . . . . . . 130
5.10 Notes for Further Reading . . . . . . . . . . . . . . . . . . . . . . . . 131
5.11 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131
6 Numerical Algorithms for Constrained Optimization 133
6.1 Constrained NLP Formulations . . . . . . . . . . . . . . . . . . . . . 133
book_tem
2010/7/27
page ix
✐
✐
✐
✐
✐
✐
✐
✐
Contents ix
6.2 SQP Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135
6.2.1 The Basic, Full-Space SQP Algorithm . . . . . . . . . . 137
6.2.2 Large-Scale SQP . . . . . . . . . . . . . . . . . . . . . . 144
6.2.3 Extensions of SQP Methods . . . . . . . . . . . . . . . . 148
6.3 Interior Point Methods . . . . . . . . . . . . . . . . . . . . . . . . . . 151
6.3.1 Solution of the Primal-Dual Equations . . . . . . . . . . 154
6.3.2 A Line Search Filter Method . . . . . . . . . . . . . . . . 155
6.3.3 Globalization with Trust Region Methods . . . . . . . . . 158
6.4 Nested Strategies . . . . . . . . . . . . . . . . . . . . . . . . . . . . 160
6.4.1 Gradient Projection Methods for Bound Constrained
Problems . . . . . . . . . . . . . . . . . . . . . . . . . . 164
6.4.2 Linearly Constrained Augmented Lagrangian . . . . . . . 167
6.5 Nonlinear Programming Codes . . . . . . . . . . . . . . . . . . . . . 168
6.5.1 SQP Codes . . . . . . . . . . . . . . . . . . . . . . . . . 169
6.5.2 Interior Point NLP Codes . . . . . . . . . . . . . . . . . 170
6.5.3 Nested and Gradient Projection NLP Codes . . . . . . . . 171
6.5.4 Performance Trends for NLP Codes . . . . . . . . . . . . 171
6.6 Summary and Conclusions . . . . . . . . . . . . . . . . . . . . . . . 175
6.7 Notes for Further Reading . . . . . . . . . . . . . . . . . . . . . . . . 176
6.8 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 178
7 Steady State Process Optimization 181
7.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 181
7.2 Optimization of Process Flowsheets . . . . . . . . . . . . . . . . . . . 183
7.2.1 Importance of Accurate Derivatives . . . . . . . . . . . 188
7.2.2 Ammonia Process Optimization . . . . . . . . . . . . . . 191
7.3 Equation-Oriented Formulation of Optimization Models . . . . . . . . 193
7.3.1 Reformulation of the Williams–Otto Optimization
Problem . . . . . . . . . . . . . . . . . . . . . . . . . . 196
7.4 Real-Time Optimization . . . . . . . . . . . . . . . . . . . . . . . . . 200
7.4.1 Equation-Oriented RTO Models . . . . . . . . . . . . . . 201
7.4.2 Case Study of Hydrocracker Fractionation Plant . . . . . 203
7.5 Equation-Oriented Models with Many Degrees of Freedom . . . . . . 206
7.6 Summary and Notes for Further Reading . . . . . . . . . . . . . . . . 209
7.7 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 209
8 Introduction to Dynamic Process Optimization 213
8.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 213
8.2 Dynamic Systems and Optimization Problems . . . . . . . . . . . . . 214
8.3 Optimality Conditions for Optimal Control Problems . . . . . . . . . 220
8.3.1 Optimal Control without Inequalities . . . . . . . . . . . 223
8.3.2 Optimal Control with Inequality Constraints . . . . . . . 225
8.4 Handling Path Constraints . . . . . . . . . . . . . . . . . . . . . . . . 232
8.4.1 Treatment of Equality Path Constraints . . . . . . . . . . 232
8.4.2 Treatment of State Path Inequalities . . . . . . . . . . . . 237
8.5 Singular Control Problems . . . . . . . . . . . . . . . . . . . . . . . 239
8.6 Numerical Methods Based on NLP Solvers . . . . . . . . . . . . . . . 243
book_tem
2010/7/27
page x
✐
✐
✐
✐
✐
✐
✐
✐
x Contents
8.7 Summary and Conclusions . . . . . . . . . . . . . . . . . . . . . . . 246
8.8 Notes for Further Reading . . . . . . . . . . . . . . . . . . . . . . . . 247
8.9 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 248
9 Dynamic Optimization Methods with Embedded DAE Solvers 251
9.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 251
9.2 DAE Solvers for Initial Value Problems . . . . . . . . . . . . . . . . . 253
9.2.1 Runge–Kutta Methods . . . . . . . . . . . . . . . . . . . 255
9.2.2 Linear Multistep Methods . . . . . . . . . . . . . . . . . 256
9.2.3 Extension of Methods to DAEs . . . . . . . . . . . . . . 259
9.3 Sensitivity Strategies for Dynamic Optimization . . . . . . . . . . . . 260
9.3.1 Direct Sensitivity Calculations . . . . . . . . . . . . . . 261
9.3.2 Adjoint Sensitivity Calculations . . . . . . . . . . . . . . 262
9.3.3 Evolution to Optimal Control Problems . . . . . . . . . . 265
9.4 Multiple Shooting . . . . . . . . . . . . . . . . . . . . . . . . . . . . 271
9.4.1 Dichotomy of Boundary Value Problems . . . . . . . . . 273
9.5 Dynamic Optimization Case Study . . . . . . . . . . . . . . . . . . . 276
9.6 Summary and Conclusions . . . . . . . . . . . . . . . . . . . . . . . 282
9.7 Notes for Further Reading . . . . . . . . . . . . . . . . . . . . . . . . 283
9.8 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 284
10 Simultaneous Methods for Dynamic Optimization 287
10.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 287
10.2 Derivation of Collocation Methods . . . . . . . . . . . . . . . . . . . 288
10.2.1 Polynomial Representation for ODE Solutions . . . . . . 289
10.2.2 Collocation with Orthogonal Polynomials . . . . . . . . 290
10.3 NLP Formulations and Solution . . . . . . . . . . . . . . . . . . . . . 295
10.3.1 Treatment of Finite Elements . . . . . . . . . . . . . . . 296
10.3.2 Treatment of Unstable Dynamic Systems . . . . . . . . . 299
10.3.3 Large-Scale NLP Solution Strategies . . . . . . . . . . . 302
10.3.4 Parameter Estimation for Low-Density Polyethylene
Reactors . . . . . . . . . . . . . . . . . . . . . . . . . . 304
10.4 Convergence Properties of Simultaneous Approach . . . . . . . . . . 309
10.4.1 Optimality with Gauss–Legendre Collocation . . . . . . . 312
10.4.2 Optimality with Radau Collocation . . . . . . . . . . . . 313
10.4.3 Convergence Orders for NLP Solutions . . . . . . . . . . 314
10.4.4 Singular Optimal Controls . . . . . . . . . . . . . . . . . 315
10.4.5 High-Index Inequality Path Constraints . . . . . . . . . . 317
10.5 Summary and Conclusions . . . . . . . . . . . . . . . . . . . . . . . 322
10.6 Notes for Further Reading . . . . . . . . . . . . . . . . . . . . . . . . 322
10.7 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 323
11 Process Optimization with Complementarity Constraints 325
11.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 325
11.2 MPCC Properties and Formulations . . . . . . . . . . . . . . . . . . . 327
11.2.1 Solution Strategies . . . . . . . . . . . . . . . . . . . . . 331
11.2.2 Comparison of MPCC Formulations . . . . . . . . . . . 333
book_tem
2010/7/27
page xi
✐
✐
✐
✐
✐
✐
✐
✐
Contents xi
11.3 Complementary Models for Process Optimization . . . . . . . . . . . 336
11.4 Distillation Case Studies . . . . . . . . . . . . . . . . . . . . . . . . . 343
11.4.1 Multicomponent Column Optimization with
Phase Changes . . . . . . . . . . . . . . . . . . . . . . . 343
11.4.2 Tray Optimization . . . . . . . . . . . . . . . . . . . . . 345
11.5 Optimization of Hybrid Dynamic Systems . . . . . . . . . . . . . . . 349
11.6 Dynamic MPCC Case Studies . . . . . . . . . . . . . . . . . . . . . . 352
11.6.1 Reformulation of a Differential Inclusion . . . . . . . . . 352
11.6.2 Cascading Tank Problem . . . . . . . . . . . . . . . . . 356
11.7 Summary and Conclusions . . . . . . . . . . . . . . . . . . . . . . . 359
11.8 Notes for Further Reading . . . . . . . . . . . . . . . . . . . . . . . . 360
11.9 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 361
Bibliography 363
Index 391
book_tem
2010/7/27
page xiii
✐
✐
✐
✐
✐
✐
✐
✐
Preface
Chemical engineering applications have been a source of challenging optimization problems
for over 50 years. For many chemical process systems, detailed steady state and dynamic
behavior can now be described by a rich set of detailed nonlinear models, and relatively small
changes in process design and operation can lead to significant improvements in efficiency,
product quality, environmental impact, and profitability. With these characteristics, it is not
surprising that systematic optimization strategies have played an important role in chemical
engineering practice. In particular, over the past 35 years, nonlinear programming (NLP)
has become an indispensable tool for the optimization of chemical processes. These tools
are now applied at research and process development stages, in the design stage, and in the
online operation of these processes. More recently, the scope of these applications is being
extended to cover more challenging, large-scale tasks including process control based on
the optimization of nonlinear dynamic models, as well as the incorporation of nonlinear
models into strategic planning functions.
Moreover, the ability to solve large-scale process optimization models cheaply, even
online, is aided by recent breakthroughs in nonlinear programming, including the development of modern barrier methods, deeper understanding of line search and trust region
strategies to aid global convergence, efficient exploitation of second derivatives in algorithmic development, and the availability of recently developed and widely used NLP codes,
including those for barrier methods [81, 391, 404], sequential quadratic programming (SQP)
[161, 159], and reduced gradient methods [119, 245, 285]. Finally, the availability of optimization modeling environments, such as AIMMS, AMPL, and GAMS, as well as the
NEOS server, has made the formulation and solution of optimization accessible to a much
wider user base. All of these advances have a huge impact in addressing and solving process engineering problems previously thought intractable. In addition to developments in
mathematical programming, research in process systems engineering has led to optimization modeling formulations that leverage these algorithmic advances, with specific model
structure and characteristics that lead to more efficient solutions.
This text attempts to make these recent optimization advances accessible to engineers
and practitioners. Optimization texts for engineers usually fall into two categories. First,
excellent mathematical programming texts (e.g., [134, 162, 294, 100, 227]) emphasize fundamental properties and numerical analysis, but have few specific examples with relevance
to real-world applications, and are less accessible to practitioners. On the other hand, equally
good engineering texts (e.g., [122, 305, 332, 53]) emphasize applications with well-known
methods and codes, but often without their underlying fundamental properties. While their
approach is accessible and quite useful for engineers, these texts do not aid in a deeper understanding of the methods or provide extensions to tackle large-scale problems efficiently.
xiii
book_tem
2010/7/27
page xiv
✐
✐
✐
✐
✐
✐
✐
✐
xiv Preface
To address the modeling and solution of large-scale process optimization problems,
it is important for optimization practitioners to understand
• which NLP methods are best suited for specific applications,
• how large-scale problems should be formulated and what features should be emphasized, and
• how existing methods can be extended to exploit specific structures of large-scale
optimization models.
This book attempts to fill the gap between the math programming and engineering
texts. It provides a firm grounding in fundamental algorithmic properties but also with
relevance to real-world problem classes through case studies. In addressing an engineering
audience, it covers state-of-the-art gradient-based NLP methods, summarizes key characteristics and advantages of these methods, and emphasizes the link between problem structure
and efficient methods. Finally, in addressing a broader audience of math programmers it
also deals with steady state and dynamic models derived from chemical engineering.
The book is written for an audience consisting of
• engineers (specifically chemical engineers) interested in understanding and applying
state-of-the-art NLP algorithms to specific applications,
• experts in mathematical optimization (in applied math and operations research) who
are interested in understanding process engineering problems and developing better
approaches to solving them, and
• researchers from both fields interested in developing better methods and problem
formulations for challenging engineering problems.
The book is suitable for a class on continuous variable optimization, but with an
emphasis on problem formulation and solution methods. It is intended as a text for graduate
and advanced undergraduate classes in engineering and is also suitable as an elective class for
students in applied mathematics and operations research. It is also intended as a reference
for practitioners in process optimization in the area of design and operations, as well as
researchers in process engineering and applied mathematics.
The text is organized into eleven chapters, and the structure follows that of a short
course taught to graduate students and industrial practitioners which has evolved over the
past 20 years. Included from the course are a number of problems and computer projects
which form useful exercises at the end of each chapter.
The eleven chapters follow sequentially and build on each other. Chapter 1 provides an overview of nonlinear programming applications in process engineering and sets
the motivation for the text. Chapter 2 defines basic concepts and properties for nonlinear
programming and focuses on fundamentals of unconstrained optimization. Chapter 3 then
develops Newton’s method for unconstrained optimization and discusses basic concepts
for globalization methods; this chapter also develops quasi-Newton methods and discusses
their characteristics.
Chapter 4 then follows with fundamental aspects of constrained optimization, building
on the concepts in Chapter 2. Algorithms for equality constrained optimization are derived
in Chapter 5 from a Newton perspective that builds on Chapter 3. Chapter 6 extends this