Siêu thị PDFTải ngay đi em, trời tối mất

Thư viện tri thức trực tuyến

Kho tài liệu với 50,000+ tài liệu học thuật

© 2023 Siêu thị PDF - Kho tài liệu học thuật hàng đầu Việt Nam

Nanomaterials and Nanochemistry
PREMIUM
Số trang
748
Kích thước
19.7 MB
Định dạng
PDF
Lượt xem
1890

Nanomaterials and Nanochemistry

Nội dung xem thử

Mô tả chi tiết

Nanomaterials and Nanochemistry

C. Brechignac P. Houdy M. Lahmani ´

(Eds.)

Nanomaterials

and Nanochemistry

123

With 461 Figures and 26 Tables

Catherine Brechignac, PhD ´

Member of l’Academie des sciences (French Academy of Sciences) ´

President of the CNRS

Centre universitaire Paris-Sud, Laboratoire Aime Cotton ´

Batiment 505, 91405 Orsay Cedex, France ˆ

E-mail: [email protected]

Philippe Houdy, PhD

Universite d’ ´ Evry ´

Boulevard François Mitterrand, 91025 Evry C ´ edex, France ´

E-mail: [email protected]

Marcel Lahmani, PhD

Club Nano-Micro-Technologie de Paris

Boulevard François Mitterrand, 91025 Evry C ´ edex, France ´

E-mail: [email protected]

Translation from the French language edition of

“Les nanosciences – Nanomateriaux et nanochimie" ´

© 2006 Editions Belin, France

ISBN 978-3-540-72992-1 Springer Berlin Heidelberg New York

This work is subject to copyright. All rights are reserved, whether the whole or part of the material

is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broad￾casting, reproduction on microfilm or in any other way, and storage in data banks. Duplication of

this publication or parts thereof is permitted only under the provisions of the German Copyright Law

of September 9, 1965, in its current version, and permission for use must always be obtained from

Springer. Violations are liable to prosecution under the German Copyright Law.

Springer is a part of Springer Science+Business Media.

springer.com

© Springer-Verlag Berlin Heidelberg 2007

The use of general descriptive names, registered names, trademarks, etc. in this publication does not

imply, even in the absence of a specific statement, that such names are exempt from the relevant pro￾tective laws and regulations and therefore free for general use.

ATEX macro package

Cover design: WMX Design GmbH, Heidelberg, using a figure from the Hanbucken–Neddermeyer ¨

collaboration, Appl. Surf. Sci. 234, 307 (2004)

Printed on acid-free paper SPIN 11743941 543210

Library of Congress Control Number: 2007928828

57/3180/SPi

Typesetting: Data prepared S. Lyle and by SPi using a Springer L

Foreword to the French Edition

Nanomaterials constitute an important branch in the burgeoning field of

nanoscience. Size reduction can lead to a whole range of new physicochemi￾cal properties and a wealth of potential applications. However, access to these

nanostructured entities requires the development of suitable methods for their

elaboration.

This book, aimed at MSc or PhD students and young engineers, research

scientists and teachers, provides a complete review of all relevant aspects from

the fabrication of nanomaterials able to carry out new functions to the self￾assembly of complex structures.

Part I provides a theoretical description of the basic principles and fun￾damental properties of nanomaterials, whilst Part II treats the physical and

chemical properties of nanoscale structures. Methods for designing and fabri￾cating such structures are then discussed in Parts III and IV.

In Part V, a great many industrial applications, some still under develop￾ment, are used to demonstrate the significant economic potential of these new

structures and their consequences in various areas of everyday life.

Supramolecular chemistry can provide novel ways of moving forward in

this domain. Indeed, molecular recognition phenomena, based on molecular

information, can be used to form supramolecular materials in a spontaneous

but controlled manner, by self-organisation starting from their components.

Self-organisation processes thus represent a powerful method for building func￾tional nanomaterials, which may provide a way of avoiding ever more delicate

and costly nanofabrication and nanomanipulation processes.

It seems fair to hope that the meeting of supramolecular chemistry with

materials science will soon open up new lines of development in nanoscience

and nanotechnology. The present work lays the foundations on which these

prospects may be pursued.

Coll`ege de France, May 2006 Jean-Marie Lehn

Preface to the French Edition

The present book Nanoscience II – Nanomaterials and Nanochemistry has

been designed as the natural continuation of Nanoscience I – Nanotechnology

and Nanophysics. It seemed to us to provide an essential complement, consid￾ering the significant developments and economic potential of nanomaterials.

Many applications of nanomaterials will undoubtedly use current technology,

with a few modifications. However, as work proceeds in this area, there is

every reason to think that the new properties they give rise to will also lead

to major industrial developments.

The chapters of the book are grouped into five main parts:

• The fundamental physicochemical principles and the basic features of mat￾ter on the nanoscale.

• The basic properties relevant to this state of matter.

• Methods for designing nanomaterials and nanoparticles.

• Fabrication processes for nanostructured bulk materials and nanoporous

materials.

• A selection of current and future industrial applications.

As a guide to the layout of the book, let us recall a few general ideas.

First of all, what is meant by the term ‘nanomaterial’? From an etymo￾logical standpoint, it would not appear to be very explicit. Indeed, the prefix

‘nano’ used in scales of physical units means one billionth, or 10−9, of the rel￾evant unit. In the present case it refers to the nanometer, or one billionth of a

meter. When we use the term nanomaterial, we are thus specifying an order

of magnitude of a geometric dimension. But then what is it in nanomaterials

that is of nanometric dimensions?

To answer this question, we must now consider the second part of the term,

viz., ‘material’. A material is matter that has been transformed or adapted

to be able to fulfill some particular function. One can say that this matter

has been functionalised. Many materials we use and which appear to the

naked eye to be of a perfectly continuous constitution are in fact made up of

grains of crystallised matter with dimensions often of the order of the micron

VIII Preface to the French Edition

(one millionth of a meter, or 10−6 m). This is true in particular for most

metals and ceramics in common use, but it is not the case for glasses and

so-called plastics, which are amorphous, or can be considered as such for the

purposes of the present discussion. These micrometric grains are of course

very small compared with the dimensions of the objects generally made with

such materials. However, they are very large compared with the dimensions

of the atoms that make them up. Indeed, atoms have diameters ten thousand

times smaller than these grains. Consequently, there are some (104)3 = 1012

or a thousand billion iron atoms in a grain of steel of diameter 1 micron.

Forty years ago, it was realised that the properties of certain materials

could be modified, improved or adapted in specific ways if, during the fabri￾cation process, the grains making them up could be made much smaller. The

first ‘nanomaterials’ were born. They can be found today in many and varied

fields of application, from cosmetics, through magnetic and electronic record￾ing devices to precision cutting tools. Further research and new developments

are under way to invent or improve novel nanomaterials, exploiting the way

their properties depend on grain sizes.

More recently, over the past twenty years or so, the term ‘nanomaterials’

has also sometimes been used to refer to matter in which the atoms make

up assemblages with dimensions of the order of a few nanometers. A priori,

these assemblages, known as clusters, have nothing in common with nano￾materials as they were previously defined. By their very nature, these new

materials, unlike their predecessors, can only be conceived on the nanometric

scale. However, they too can exhibit quite exceptional properties and are cur￾rently the subject of much scientific interest both on the level of fundamental

research and for their prospective applications. The elaboration of memory

cells on a quasi-molecular scale can be cited as one of the most exciting of

these prospects.

To get a clearer idea of the distinction between these two families of nano￾materials, let us take the example of solid architectures made from carbon

atoms:

• In the solid state, carbon is known to occur in two crystal forms: graphite

and diamond. Both can be produced in the form of very small grains, a

few nanometers in size. Carbon can therefore be produced at least in the

form of a powder, comprising nanograins of graphite or diamond. One thus

seeks to establish how the properties of graphite or diamond will vary with

the grain dimensions.

• Furthermore, it has now been known for around twenty years how to make

a type of molecule known as a fullerene, the most familiar being C60, which

comprises 60 carbon atoms. We have also discovered, even more recently,

how to create another special kind of architecture from carbon atoms,

namely carbon nanotubes. C60 like the nanotubes is neither graphite nor

diamond reduced to the nanometric length scale. They are both entirely

novel entities, totally different from the traditional forms of solid carbon.

Preface to the French Edition IX

Conceptually, therefore, there seem to be two large families of nanomaterials

and hence two communities of research scientists which have evolved inde￾pendently of one another. These two communities can be distinguished in the

following ways:

• by the nature and spirit of the fundamental research they carry out,

• by the applications, which are conventional for the first community because

they generally seek to improve or optimise the performance of a material

that is already known and used in the same field, e.g., greater data or

energy storage capacity, increased hardness or greater aptitude for plastic

deformation, etc. In contrast, the prospective applications are completely

novel in the second family of nanomaterials, e.g., carbon nanotube mem￾ories, implying basic computer processing units on the molecular scale!

However, this distinction cannot be so clearly made in the case of metals. After

all, is there a fundamental distinction between a cluster of silver atoms and

a nanometric silver grain? Can we not consider a silver nanograin containing

10 × 10 × 10 = 103 atoms as a rather large silver cluster? Is this not an

artificial distinction between the two communities and the two concepts of

what constitutes a nanomaterial?

From a historical perspective, the distinction between these two commu￾nities and the two concepts would appear to be justified. One community,

using the so-called bottom-up approach, started with the atom and built up

nano-objects from there, while the other, adopting a top-down approach set

out from standard bulk materials to design and produce the same materials

but made up from nanometric grains.

Likewise, the development of processes and products based on advanced

knowledge of the chemistry of molecular or particle synthesis, or supramole￾cular chemistry, will lead to a wide range of objects with novel properties as

regards strength, optics, electronics, magnetism, biology, and so on.

In the end we should therefore arrive at a single physicochemistry of nano￾objects, a multiscale physicochemistry that will take into account the organ￾isational state and properties of nanograins as a function of their size or the

number of atoms making them up.

Universit´e de Bourgogne, Dijon, May 2006 Jean-Claude Ni`epce

X Preface to the French Edition

Acknowledgements

We would like to thank all members of the French nanoscience commu￾nity (CNRS, CEA, universities, Grandes Ecoles, industry) who gave a very

favourable welcome to the writing of these pedagogical introductions to nan￾otechnology and nanophysics, nanomaterials and nanochemistry (presented

here), and nanobiotechnology and nanobiology (to be published soon), and

without which they would have been impossible. Special thanks go, of course,

to all those who contributed to these books.

We would also like to thank the late Hubert Curien of the Academy of

Sciences (Paris) and Jean-Marie Lehn (Nobel Prize for Chemistry) for con￾tributing the forewords to volumes I and II of this series, and also Patrice

Hesto who gave invaluable advice when the project first began.

We warmly acknowledge the material and financial support of the French

Ministry of Research, orchestrated by Jean-Louis Robert of the Department

of Physics, Chemistry, and Engineering Sciences, and Michel Lanoo, Director

of the Department of Physical Sciences and Mathematics at the CNRS.

Likewise, our warmest thanks go to Claude Puech, President of the

Club NanoMicroTechnologie, everyone at the LMN (Laboratoire d’´etude des

Milieux Nanom´etriques at the University of Evry, France) and the GIFO

(Groupement des Industries Fran¸caises de l’Optique) for their administrative

and logistical support.

Finally, we would like to thank Henri Van Damme and Dominique Givord

for their continued scientific support, especially during copy-editing sessions,

and Paul Siffert of the European Materials Research Society for supporting

the English edition of the book.

Marcel Lahmani, Catherine Br´echignac and Philippe Houdy

Contents

Part I Basic Principles and Fundamental Properties

1 Size Effects on Structure and Morphology

of Free or Supported Nanoparticles

C. Henry ....................................................... 3

1.1 Size and Confinement Effects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.1.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.1.2 Fraction of Surface Atoms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.1.3 Specific Surface Energy and Surface Stress . . . . . . . . . . . . . . . 4

1.1.4 Effect on the Lattice Parameter . . . . . . . . . . . . . . . . . . . . . . . . 5

1.1.5 Effect on the Phonon Density of States . . . . . . . . . . . . . . . . . . 8

1.2 Nanoparticle Morphology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

1.2.1 Equilibrium Shape of a Macroscopic Crystal . . . . . . . . . . . . . 8

1.2.2 Equilibrium Shape of Nanometric Crystals . . . . . . . . . . . . . . . 10

1.2.3 Morphology of Supported Particles . . . . . . . . . . . . . . . . . . . . . 17

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

2 Structure and Phase Transitions in Nanocrystals

J.-C. Ni`epce, L. Pizzagalli ........................................ 35

2.1 Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

2.2 Crystalline Phase Transitions in Nanocrystals . . . . . . . . . . . . . . . . . . 39

2.2.1 Phase Transitions and Grain Size Dependence. . . . . . . . . . . . 39

2.2.2 Elementary Thermodynamics of the Grain Size

Dependence of Phase Transitions . . . . . . . . . . . . . . . . . . . . . . . 40

2.2.3 Influence of the Surface or Interface on Nanocrystals . . . . . . 42

2.2.4 Modification of Transition Barriers . . . . . . . . . . . . . . . . . . . . . 44

2.3 Geometric Evolution of the Lattice in Nanocrystals. . . . . . . . . . . . . . 46

2.3.1 Grain Size Dependence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

2.3.2 Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

2.3.3 Influence of the Nanocrystal Surface or Interface

on the Lattice Parameter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

XII Contents

2.3.4 Is There a Continuous Variation of the Crystal State

Within Nanocrystals? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

3 Thermodynamics and Solid–Liquid Transitions

P. Labastie, F. Calvo ............................................. 55

3.1 Size Dependence of the Solid–Liquid Transition . . . . . . . . . . . . . . . . . 56

3.1.1 From the Macroscopic to the Nanometric . . . . . . . . . . . . . . . . 56

3.1.2 From Nanoparticles to Molecules . . . . . . . . . . . . . . . . . . . . . . . 64

3.2 Thermodynamics of Very Small Systems . . . . . . . . . . . . . . . . . . . . . . . 67

3.2.1 General Considerations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

3.2.2 Non-Equivalence of the Gibbs Ensembles . . . . . . . . . . . . . . . . 68

3.2.3 Dynamically Coexisting Phases . . . . . . . . . . . . . . . . . . . . . . . . 69

3.2.4 Stability of an Isolated Particle.

Thermodynamic Equilibrium. . . . . . . . . . . . . . . . . . . . . . . . . . . 73

3.3 Evaporation: Consequences and Observations . . . . . . . . . . . . . . . . . . . 74

3.3.1 Statistical Theories of Evaporation . . . . . . . . . . . . . . . . . . . . . 74

3.3.2 Link with the Solid–Liquid Transition. Numerical Results . 79

3.3.3 Experimental Investigation of Evaporation . . . . . . . . . . . . . . . 80

3.3.4 Beyond Unimolecular Evaporation . . . . . . . . . . . . . . . . . . . . . . 81

3.3.5 Toward the Liquid–Gas Transition . . . . . . . . . . . . . . . . . . . . . . 82

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

4 Modelling and Simulating the Dynamics of Nano-Objects

A. Pimpinelli .................................................... 89

4.1 Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

4.2 Free Clusters of Atoms.

Molecular Dynamics Simulations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

4.3 Evolution of Free and Supported Nanoclusters

Toward Equilibrium. Kinetic Monte Carlo Simulations . . . . . . . . . . . 93

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

Part II Physical and Chemical Properties on the Nanoscale

5 Magnetism in Nanomaterials

D. Givord ....................................................... 101

5.1 Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

5.2 Magnetism in Matter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

5.2.1 Magnetic Moment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

5.2.2 Magnetic Order . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

5.2.3 Magnetocrystalline Anisotropy . . . . . . . . . . . . . . . . . . . . . . . . . 108

5.3 Magnetisation Process and Magnetic Materials . . . . . . . . . . . . . . . . . 110

5.3.1 Energy of the Demagnetising Field. Domains and Walls . . . 111

5.3.2 The Magnetisation Process . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112

5.3.3 Magnetic Materials . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115

Contents XIII

5.4 Magnetism in Small Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116

5.4.1 Magnetic Moments in Clusters . . . . . . . . . . . . . . . . . . . . . . . . . 116

5.4.2 Magnetic Order in Nanoparticles . . . . . . . . . . . . . . . . . . . . . . . 119

5.4.3 Magnetic Anisotropy in Clusters and Nanoparticles . . . . . . . 120

5.5 Magnetostatics and Magnetisation Processes in Nanoparticles . . . . 121

5.5.1 Single-Domain Magnetic Particles . . . . . . . . . . . . . . . . . . . . . . 121

5.5.2 Thermal Activation and Superparamagnetism . . . . . . . . . . . . 122

5.5.3 Coherent Rotation in Nanoparticles . . . . . . . . . . . . . . . . . . . . . 123

5.5.4 From Thermal Activation to the Macroscopic Tunnel Effect 124

5.6 Magnetism in Coupled Nanosystems . . . . . . . . . . . . . . . . . . . . . . . . . . . 126

5.6.1 Exchange-Coupled Nanocrystals. Ultrasoft Materials

and Enhanced Remanence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126

5.6.2 Coercivity in Nanocomposites . . . . . . . . . . . . . . . . . . . . . . . . . . 128

5.6.3 Exchange Bias in Systems of Ferromagnetic Nanoparticles

Coupled with an Antiferromagnetic Matrix . . . . . . . . . . . . . . 130

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132

6 Electronic Structure in Clusters and Nanoparticles

F. Spiegelman ................................................... 135

6.1 Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135

6.2 Liquid-Drop Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139

6.3 Methods for Calculating Electronic Structure . . . . . . . . . . . . . . . . . . . 141

6.3.1 Born–Oppenheimer Approximation. Surface Potential . . . . . 142

6.3.2 Ab Initio Calculation of Electronic Structure . . . . . . . . . . . . . 144

6.3.3 Density Functional Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147

6.3.4 Charge Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149

6.3.5 Approximate and Semi-Empirical Descriptions . . . . . . . . . . . 150

6.3.6 Energy Bands and Densities of States . . . . . . . . . . . . . . . . . . . 152

6.4 Applications to Some Typical Examples . . . . . . . . . . . . . . . . . . . . . . . 154

6.4.1 Metallic Nanoparticles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 154

6.4.2 Molecular Clusters. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 162

6.4.3 Ionic and Ionocovalent Clusters . . . . . . . . . . . . . . . . . . . . . . . . 170

6.4.4 Covalent Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 175

6.5 Valence Changes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 178

6.5.1 Transitions with Size. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 178

6.5.2 Transitions with Stoichiometry . . . . . . . . . . . . . . . . . . . . . . . . . 179

6.6 Nanotubes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 182

6.7 Prospects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 185

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 188

7 Optical Properties of Metallic Nanoparticles

F. Vall´ee ........................................................ 197

7.1 Optical Response for Free Clusters

and Composite Materials . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 198

XIV Contents

7.2 Optical Response

in the Quasi-Static Approximation: Nanospheres . . . . . . . . . . . . . . . . 199

7.3 Dielectric Constant of a Metal:

Nanometric Size Effect . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 203

7.4 Surface Plasmon Resonance

in the Quasi-Static Approximation: Nanospheres . . . . . . . . . . . . . . . . 207

7.5 Surface Plasmon Resonance:

Quantum Effects for Small Sizes (D < 5 nm) . . . . . . . . . . . . . . . . . . . 211

7.6 General Case for Nanospheres: The Mie Model . . . . . . . . . . . . . . . . . 213

7.7 Non-Spherical or Inhomogeneous Nanoparticles

in the Quasi-Static Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 216

7.7.1 Shape Effects: Ellipsoids. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 216

7.7.2 Structure Effects: Core–Shell System . . . . . . . . . . . . . . . . . . . . 217

7.8 Optical Response of a Single Metal Nanoparticle . . . . . . . . . . . . . . . . 219

7.9 Electromagnetic Field Enhancement: Applications . . . . . . . . . . . . . . . 221

7.9.1 Nonlinear Optical Response. . . . . . . . . . . . . . . . . . . . . . . . . . . . 221

7.9.2 Time-Resolved Spectroscopy . . . . . . . . . . . . . . . . . . . . . . . . . . . 222

7.9.3 Local Enhancement of Raman Scattering: SERS . . . . . . . . . . 223

7.10 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 224

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 226

8 Mechanical and Nanomechanical Properties

C. Tromas, M. Verdier, M. Fivel, P. Aubert, S. Labdi, Z.-Q. Feng,

M. Zei, P. Joli .................................................. 229

8.1 Macroscopic Mechanical Properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . 229

8.1.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 229

8.1.2 Elastic Properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 229

8.1.3 Hardness . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 231

8.1.4 Ductility . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 234

8.1.5 Numerical Modelling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 236

8.2 Nanomechanical Properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 238

8.2.1 Experimentation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 238

8.2.2 Computer Modelling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 254

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 265

9 Superplasticity

T. Rouxel ....................................................... 269

9.1 Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 269

9.2 Mechanism . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 270

9.3 Superplastic Nanostructured Materials . . . . . . . . . . . . . . . . . . . . . . . . . 276

9.4 Industrial Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 277

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 280

Contents XV

10 Reactivity of Metal Nanoparticles

J.-C. Bertolini, J.-L. Rousset ...................................... 281

10.1 Size Effects. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 282

10.1.1 Structural Properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 282

10.1.2 Electronic Properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 286

10.1.3 Reactivity in Chemisorption and Catalysis

of Monometallic Nanoparticles . . . . . . . . . . . . . . . . . . . . . . . . . 288

10.2 Support Effects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 293

10.3 Alloying Effects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 295

10.3.1 Effect of Surface Segregation . . . . . . . . . . . . . . . . . . . . . . . . . . . 296

10.3.2 Geometric Effects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 297

10.3.3 Electronic Effects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 298

10.4 Preparation and Implementation in the Laboratory

and in Industry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 299

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 302

11 Inverse Systems – Nanoporous Solids

J. Patarin, O. Spalla, F. Di Renzo ................................. 305

11.1 Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 305

11.2 Nomenclature: The Main Families

of Porous Materials . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 305

11.3 Zeolites and Related Microporous Solids.

Definition and Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 307

11.4 Ordered Mesoporous Solids . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 309

11.5 Disordered Nanoporous Solids . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 311

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 314

12 Inverse Systems – Confined Fluids:

Phase Diagram and Metastability

E. Charlaix, R. Denoyel .......................................... 315

12.1 Displacement of First Order Transitions: Evaporation and

Condensation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 315

12.1.1 Adsorption Isotherms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 315

12.1.2 Capillary Condensation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 317

12.1.3 Capillary Pressure and the Kelvin Radius . . . . . . . . . . . . . . . 319

12.1.4 Non-Wetting Fluid . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 320

12.1.5 Perfectly Wetting Fluid . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 320

12.1.6 Hysteresis, Metastability and Nucleation . . . . . . . . . . . . . . . . 322

12.2 Melting–Solidification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 325

12.3 Modification of the Critical Temperature . . . . . . . . . . . . . . . . . . . . . . . 329

12.4 Ultraconfinement: Microporous Materials . . . . . . . . . . . . . . . . . . . . . . 331

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 334

XVI Contents

13 Supramolecular Chemistry: Applications and Prospects

N. Solladi´e, J.-F. Nierengarten .................................... 335

13.1 From Molecular to Supramolecular Chemistry . . . . . . . . . . . . . . . . . . 335

13.2 Molecular Recognition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 335

13.3 Anionic Coordination Chemistry

and Recognition of Anionic Substrates . . . . . . . . . . . . . . . . . . . . . . . . . 338

13.4 Multiple Recognition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 338

13.5 Applications. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 341

13.6 Prospects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 343

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 344

14 Nanocomposites: The End of Compromise

H. Van Damme .................................................. 347

14.1 Composites and Nanocomposites . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 347

14.2 Introduction to Polymers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 351

14.2.1 Ideal Chains . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 352

14.2.2 The Glass Transition. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 354

14.2.3 Entropic Elasticity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 357

14.3 Nanofillers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 359

14.3.1 Clays . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 359

14.3.2 Carbon Nanotubes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 363

14.4 Strengthening and Permeability Control: Models . . . . . . . . . . . . . . . . 364

14.4.1 Strengthening: Increasing the Modulus . . . . . . . . . . . . . . . . . . 364

14.4.2 Impermeability: Reducing the Diffusivity . . . . . . . . . . . . . . . . 367

14.5 Strengthening and Permeability

of Nanocomposites: Facts and Explanations . . . . . . . . . . . . . . . . . . . . 369

14.5.1 Strengthening: Successes and Failures . . . . . . . . . . . . . . . . . . . 369

14.5.2 Impermeability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 376

14.5.3 Dimensional Stability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 377

14.5.4 Fire Resistance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 379

14.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 379

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 380

Part III Synthesis of Nanomaterials and Nanoparticles

15 Specific Features of Nanoscale Growth

J. Livage, D. Roux ............................................... 383

15.1 Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 383

15.2 Thermodynamics of Phase Transitions . . . . . . . . . . . . . . . . . . . . . . . . . 383

15.3 Dynamics of Phase Transitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 385

15.3.1 Thermodynamics of Spinodal Decomposition . . . . . . . . . . . . . 386

15.3.2 Thermodynamics of Nucleation–Growth . . . . . . . . . . . . . . . . . 388

15.4 Size Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 389

15.5 Triggering the Phase Transition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 391

Tải ngay đi em, còn do dự, trời tối mất!