Thư viện tri thức trực tuyến
Kho tài liệu với 50,000+ tài liệu học thuật
© 2023 Siêu thị PDF - Kho tài liệu học thuật hàng đầu Việt Nam

Nanomaterials and Nanochemistry
Nội dung xem thử
Mô tả chi tiết
Nanomaterials and Nanochemistry
C. Brechignac P. Houdy M. Lahmani ´
(Eds.)
Nanomaterials
and Nanochemistry
123
With 461 Figures and 26 Tables
Catherine Brechignac, PhD ´
Member of l’Academie des sciences (French Academy of Sciences) ´
President of the CNRS
Centre universitaire Paris-Sud, Laboratoire Aime Cotton ´
Batiment 505, 91405 Orsay Cedex, France ˆ
E-mail: [email protected]
Philippe Houdy, PhD
Universite d’ ´ Evry ´
Boulevard François Mitterrand, 91025 Evry C ´ edex, France ´
E-mail: [email protected]
Marcel Lahmani, PhD
Club Nano-Micro-Technologie de Paris
Boulevard François Mitterrand, 91025 Evry C ´ edex, France ´
E-mail: [email protected]
Translation from the French language edition of
“Les nanosciences – Nanomateriaux et nanochimie" ´
© 2006 Editions Belin, France
ISBN 978-3-540-72992-1 Springer Berlin Heidelberg New York
This work is subject to copyright. All rights are reserved, whether the whole or part of the material
is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction on microfilm or in any other way, and storage in data banks. Duplication of
this publication or parts thereof is permitted only under the provisions of the German Copyright Law
of September 9, 1965, in its current version, and permission for use must always be obtained from
Springer. Violations are liable to prosecution under the German Copyright Law.
Springer is a part of Springer Science+Business Media.
springer.com
© Springer-Verlag Berlin Heidelberg 2007
The use of general descriptive names, registered names, trademarks, etc. in this publication does not
imply, even in the absence of a specific statement, that such names are exempt from the relevant protective laws and regulations and therefore free for general use.
ATEX macro package
Cover design: WMX Design GmbH, Heidelberg, using a figure from the Hanbucken–Neddermeyer ¨
collaboration, Appl. Surf. Sci. 234, 307 (2004)
Printed on acid-free paper SPIN 11743941 543210
Library of Congress Control Number: 2007928828
57/3180/SPi
Typesetting: Data prepared S. Lyle and by SPi using a Springer L
Foreword to the French Edition
Nanomaterials constitute an important branch in the burgeoning field of
nanoscience. Size reduction can lead to a whole range of new physicochemical properties and a wealth of potential applications. However, access to these
nanostructured entities requires the development of suitable methods for their
elaboration.
This book, aimed at MSc or PhD students and young engineers, research
scientists and teachers, provides a complete review of all relevant aspects from
the fabrication of nanomaterials able to carry out new functions to the selfassembly of complex structures.
Part I provides a theoretical description of the basic principles and fundamental properties of nanomaterials, whilst Part II treats the physical and
chemical properties of nanoscale structures. Methods for designing and fabricating such structures are then discussed in Parts III and IV.
In Part V, a great many industrial applications, some still under development, are used to demonstrate the significant economic potential of these new
structures and their consequences in various areas of everyday life.
Supramolecular chemistry can provide novel ways of moving forward in
this domain. Indeed, molecular recognition phenomena, based on molecular
information, can be used to form supramolecular materials in a spontaneous
but controlled manner, by self-organisation starting from their components.
Self-organisation processes thus represent a powerful method for building functional nanomaterials, which may provide a way of avoiding ever more delicate
and costly nanofabrication and nanomanipulation processes.
It seems fair to hope that the meeting of supramolecular chemistry with
materials science will soon open up new lines of development in nanoscience
and nanotechnology. The present work lays the foundations on which these
prospects may be pursued.
Coll`ege de France, May 2006 Jean-Marie Lehn
Preface to the French Edition
The present book Nanoscience II – Nanomaterials and Nanochemistry has
been designed as the natural continuation of Nanoscience I – Nanotechnology
and Nanophysics. It seemed to us to provide an essential complement, considering the significant developments and economic potential of nanomaterials.
Many applications of nanomaterials will undoubtedly use current technology,
with a few modifications. However, as work proceeds in this area, there is
every reason to think that the new properties they give rise to will also lead
to major industrial developments.
The chapters of the book are grouped into five main parts:
• The fundamental physicochemical principles and the basic features of matter on the nanoscale.
• The basic properties relevant to this state of matter.
• Methods for designing nanomaterials and nanoparticles.
• Fabrication processes for nanostructured bulk materials and nanoporous
materials.
• A selection of current and future industrial applications.
As a guide to the layout of the book, let us recall a few general ideas.
First of all, what is meant by the term ‘nanomaterial’? From an etymological standpoint, it would not appear to be very explicit. Indeed, the prefix
‘nano’ used in scales of physical units means one billionth, or 10−9, of the relevant unit. In the present case it refers to the nanometer, or one billionth of a
meter. When we use the term nanomaterial, we are thus specifying an order
of magnitude of a geometric dimension. But then what is it in nanomaterials
that is of nanometric dimensions?
To answer this question, we must now consider the second part of the term,
viz., ‘material’. A material is matter that has been transformed or adapted
to be able to fulfill some particular function. One can say that this matter
has been functionalised. Many materials we use and which appear to the
naked eye to be of a perfectly continuous constitution are in fact made up of
grains of crystallised matter with dimensions often of the order of the micron
VIII Preface to the French Edition
(one millionth of a meter, or 10−6 m). This is true in particular for most
metals and ceramics in common use, but it is not the case for glasses and
so-called plastics, which are amorphous, or can be considered as such for the
purposes of the present discussion. These micrometric grains are of course
very small compared with the dimensions of the objects generally made with
such materials. However, they are very large compared with the dimensions
of the atoms that make them up. Indeed, atoms have diameters ten thousand
times smaller than these grains. Consequently, there are some (104)3 = 1012
or a thousand billion iron atoms in a grain of steel of diameter 1 micron.
Forty years ago, it was realised that the properties of certain materials
could be modified, improved or adapted in specific ways if, during the fabrication process, the grains making them up could be made much smaller. The
first ‘nanomaterials’ were born. They can be found today in many and varied
fields of application, from cosmetics, through magnetic and electronic recording devices to precision cutting tools. Further research and new developments
are under way to invent or improve novel nanomaterials, exploiting the way
their properties depend on grain sizes.
More recently, over the past twenty years or so, the term ‘nanomaterials’
has also sometimes been used to refer to matter in which the atoms make
up assemblages with dimensions of the order of a few nanometers. A priori,
these assemblages, known as clusters, have nothing in common with nanomaterials as they were previously defined. By their very nature, these new
materials, unlike their predecessors, can only be conceived on the nanometric
scale. However, they too can exhibit quite exceptional properties and are currently the subject of much scientific interest both on the level of fundamental
research and for their prospective applications. The elaboration of memory
cells on a quasi-molecular scale can be cited as one of the most exciting of
these prospects.
To get a clearer idea of the distinction between these two families of nanomaterials, let us take the example of solid architectures made from carbon
atoms:
• In the solid state, carbon is known to occur in two crystal forms: graphite
and diamond. Both can be produced in the form of very small grains, a
few nanometers in size. Carbon can therefore be produced at least in the
form of a powder, comprising nanograins of graphite or diamond. One thus
seeks to establish how the properties of graphite or diamond will vary with
the grain dimensions.
• Furthermore, it has now been known for around twenty years how to make
a type of molecule known as a fullerene, the most familiar being C60, which
comprises 60 carbon atoms. We have also discovered, even more recently,
how to create another special kind of architecture from carbon atoms,
namely carbon nanotubes. C60 like the nanotubes is neither graphite nor
diamond reduced to the nanometric length scale. They are both entirely
novel entities, totally different from the traditional forms of solid carbon.
Preface to the French Edition IX
Conceptually, therefore, there seem to be two large families of nanomaterials
and hence two communities of research scientists which have evolved independently of one another. These two communities can be distinguished in the
following ways:
• by the nature and spirit of the fundamental research they carry out,
• by the applications, which are conventional for the first community because
they generally seek to improve or optimise the performance of a material
that is already known and used in the same field, e.g., greater data or
energy storage capacity, increased hardness or greater aptitude for plastic
deformation, etc. In contrast, the prospective applications are completely
novel in the second family of nanomaterials, e.g., carbon nanotube memories, implying basic computer processing units on the molecular scale!
However, this distinction cannot be so clearly made in the case of metals. After
all, is there a fundamental distinction between a cluster of silver atoms and
a nanometric silver grain? Can we not consider a silver nanograin containing
10 × 10 × 10 = 103 atoms as a rather large silver cluster? Is this not an
artificial distinction between the two communities and the two concepts of
what constitutes a nanomaterial?
From a historical perspective, the distinction between these two communities and the two concepts would appear to be justified. One community,
using the so-called bottom-up approach, started with the atom and built up
nano-objects from there, while the other, adopting a top-down approach set
out from standard bulk materials to design and produce the same materials
but made up from nanometric grains.
Likewise, the development of processes and products based on advanced
knowledge of the chemistry of molecular or particle synthesis, or supramolecular chemistry, will lead to a wide range of objects with novel properties as
regards strength, optics, electronics, magnetism, biology, and so on.
In the end we should therefore arrive at a single physicochemistry of nanoobjects, a multiscale physicochemistry that will take into account the organisational state and properties of nanograins as a function of their size or the
number of atoms making them up.
Universit´e de Bourgogne, Dijon, May 2006 Jean-Claude Ni`epce
X Preface to the French Edition
Acknowledgements
We would like to thank all members of the French nanoscience community (CNRS, CEA, universities, Grandes Ecoles, industry) who gave a very
favourable welcome to the writing of these pedagogical introductions to nanotechnology and nanophysics, nanomaterials and nanochemistry (presented
here), and nanobiotechnology and nanobiology (to be published soon), and
without which they would have been impossible. Special thanks go, of course,
to all those who contributed to these books.
We would also like to thank the late Hubert Curien of the Academy of
Sciences (Paris) and Jean-Marie Lehn (Nobel Prize for Chemistry) for contributing the forewords to volumes I and II of this series, and also Patrice
Hesto who gave invaluable advice when the project first began.
We warmly acknowledge the material and financial support of the French
Ministry of Research, orchestrated by Jean-Louis Robert of the Department
of Physics, Chemistry, and Engineering Sciences, and Michel Lanoo, Director
of the Department of Physical Sciences and Mathematics at the CNRS.
Likewise, our warmest thanks go to Claude Puech, President of the
Club NanoMicroTechnologie, everyone at the LMN (Laboratoire d’´etude des
Milieux Nanom´etriques at the University of Evry, France) and the GIFO
(Groupement des Industries Fran¸caises de l’Optique) for their administrative
and logistical support.
Finally, we would like to thank Henri Van Damme and Dominique Givord
for their continued scientific support, especially during copy-editing sessions,
and Paul Siffert of the European Materials Research Society for supporting
the English edition of the book.
Marcel Lahmani, Catherine Br´echignac and Philippe Houdy
Contents
Part I Basic Principles and Fundamental Properties
1 Size Effects on Structure and Morphology
of Free or Supported Nanoparticles
C. Henry ....................................................... 3
1.1 Size and Confinement Effects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.1.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.1.2 Fraction of Surface Atoms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.1.3 Specific Surface Energy and Surface Stress . . . . . . . . . . . . . . . 4
1.1.4 Effect on the Lattice Parameter . . . . . . . . . . . . . . . . . . . . . . . . 5
1.1.5 Effect on the Phonon Density of States . . . . . . . . . . . . . . . . . . 8
1.2 Nanoparticle Morphology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
1.2.1 Equilibrium Shape of a Macroscopic Crystal . . . . . . . . . . . . . 8
1.2.2 Equilibrium Shape of Nanometric Crystals . . . . . . . . . . . . . . . 10
1.2.3 Morphology of Supported Particles . . . . . . . . . . . . . . . . . . . . . 17
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
2 Structure and Phase Transitions in Nanocrystals
J.-C. Ni`epce, L. Pizzagalli ........................................ 35
2.1 Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
2.2 Crystalline Phase Transitions in Nanocrystals . . . . . . . . . . . . . . . . . . 39
2.2.1 Phase Transitions and Grain Size Dependence. . . . . . . . . . . . 39
2.2.2 Elementary Thermodynamics of the Grain Size
Dependence of Phase Transitions . . . . . . . . . . . . . . . . . . . . . . . 40
2.2.3 Influence of the Surface or Interface on Nanocrystals . . . . . . 42
2.2.4 Modification of Transition Barriers . . . . . . . . . . . . . . . . . . . . . 44
2.3 Geometric Evolution of the Lattice in Nanocrystals. . . . . . . . . . . . . . 46
2.3.1 Grain Size Dependence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
2.3.2 Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
2.3.3 Influence of the Nanocrystal Surface or Interface
on the Lattice Parameter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
XII Contents
2.3.4 Is There a Continuous Variation of the Crystal State
Within Nanocrystals? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
3 Thermodynamics and Solid–Liquid Transitions
P. Labastie, F. Calvo ............................................. 55
3.1 Size Dependence of the Solid–Liquid Transition . . . . . . . . . . . . . . . . . 56
3.1.1 From the Macroscopic to the Nanometric . . . . . . . . . . . . . . . . 56
3.1.2 From Nanoparticles to Molecules . . . . . . . . . . . . . . . . . . . . . . . 64
3.2 Thermodynamics of Very Small Systems . . . . . . . . . . . . . . . . . . . . . . . 67
3.2.1 General Considerations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
3.2.2 Non-Equivalence of the Gibbs Ensembles . . . . . . . . . . . . . . . . 68
3.2.3 Dynamically Coexisting Phases . . . . . . . . . . . . . . . . . . . . . . . . 69
3.2.4 Stability of an Isolated Particle.
Thermodynamic Equilibrium. . . . . . . . . . . . . . . . . . . . . . . . . . . 73
3.3 Evaporation: Consequences and Observations . . . . . . . . . . . . . . . . . . . 74
3.3.1 Statistical Theories of Evaporation . . . . . . . . . . . . . . . . . . . . . 74
3.3.2 Link with the Solid–Liquid Transition. Numerical Results . 79
3.3.3 Experimental Investigation of Evaporation . . . . . . . . . . . . . . . 80
3.3.4 Beyond Unimolecular Evaporation . . . . . . . . . . . . . . . . . . . . . . 81
3.3.5 Toward the Liquid–Gas Transition . . . . . . . . . . . . . . . . . . . . . . 82
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86
4 Modelling and Simulating the Dynamics of Nano-Objects
A. Pimpinelli .................................................... 89
4.1 Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89
4.2 Free Clusters of Atoms.
Molecular Dynamics Simulations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90
4.3 Evolution of Free and Supported Nanoclusters
Toward Equilibrium. Kinetic Monte Carlo Simulations . . . . . . . . . . . 93
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97
Part II Physical and Chemical Properties on the Nanoscale
5 Magnetism in Nanomaterials
D. Givord ....................................................... 101
5.1 Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101
5.2 Magnetism in Matter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102
5.2.1 Magnetic Moment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102
5.2.2 Magnetic Order . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105
5.2.3 Magnetocrystalline Anisotropy . . . . . . . . . . . . . . . . . . . . . . . . . 108
5.3 Magnetisation Process and Magnetic Materials . . . . . . . . . . . . . . . . . 110
5.3.1 Energy of the Demagnetising Field. Domains and Walls . . . 111
5.3.2 The Magnetisation Process . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112
5.3.3 Magnetic Materials . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115
Contents XIII
5.4 Magnetism in Small Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116
5.4.1 Magnetic Moments in Clusters . . . . . . . . . . . . . . . . . . . . . . . . . 116
5.4.2 Magnetic Order in Nanoparticles . . . . . . . . . . . . . . . . . . . . . . . 119
5.4.3 Magnetic Anisotropy in Clusters and Nanoparticles . . . . . . . 120
5.5 Magnetostatics and Magnetisation Processes in Nanoparticles . . . . 121
5.5.1 Single-Domain Magnetic Particles . . . . . . . . . . . . . . . . . . . . . . 121
5.5.2 Thermal Activation and Superparamagnetism . . . . . . . . . . . . 122
5.5.3 Coherent Rotation in Nanoparticles . . . . . . . . . . . . . . . . . . . . . 123
5.5.4 From Thermal Activation to the Macroscopic Tunnel Effect 124
5.6 Magnetism in Coupled Nanosystems . . . . . . . . . . . . . . . . . . . . . . . . . . . 126
5.6.1 Exchange-Coupled Nanocrystals. Ultrasoft Materials
and Enhanced Remanence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126
5.6.2 Coercivity in Nanocomposites . . . . . . . . . . . . . . . . . . . . . . . . . . 128
5.6.3 Exchange Bias in Systems of Ferromagnetic Nanoparticles
Coupled with an Antiferromagnetic Matrix . . . . . . . . . . . . . . 130
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132
6 Electronic Structure in Clusters and Nanoparticles
F. Spiegelman ................................................... 135
6.1 Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135
6.2 Liquid-Drop Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139
6.3 Methods for Calculating Electronic Structure . . . . . . . . . . . . . . . . . . . 141
6.3.1 Born–Oppenheimer Approximation. Surface Potential . . . . . 142
6.3.2 Ab Initio Calculation of Electronic Structure . . . . . . . . . . . . . 144
6.3.3 Density Functional Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147
6.3.4 Charge Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149
6.3.5 Approximate and Semi-Empirical Descriptions . . . . . . . . . . . 150
6.3.6 Energy Bands and Densities of States . . . . . . . . . . . . . . . . . . . 152
6.4 Applications to Some Typical Examples . . . . . . . . . . . . . . . . . . . . . . . 154
6.4.1 Metallic Nanoparticles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 154
6.4.2 Molecular Clusters. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 162
6.4.3 Ionic and Ionocovalent Clusters . . . . . . . . . . . . . . . . . . . . . . . . 170
6.4.4 Covalent Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 175
6.5 Valence Changes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 178
6.5.1 Transitions with Size. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 178
6.5.2 Transitions with Stoichiometry . . . . . . . . . . . . . . . . . . . . . . . . . 179
6.6 Nanotubes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 182
6.7 Prospects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 185
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 188
7 Optical Properties of Metallic Nanoparticles
F. Vall´ee ........................................................ 197
7.1 Optical Response for Free Clusters
and Composite Materials . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 198
XIV Contents
7.2 Optical Response
in the Quasi-Static Approximation: Nanospheres . . . . . . . . . . . . . . . . 199
7.3 Dielectric Constant of a Metal:
Nanometric Size Effect . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 203
7.4 Surface Plasmon Resonance
in the Quasi-Static Approximation: Nanospheres . . . . . . . . . . . . . . . . 207
7.5 Surface Plasmon Resonance:
Quantum Effects for Small Sizes (D < 5 nm) . . . . . . . . . . . . . . . . . . . 211
7.6 General Case for Nanospheres: The Mie Model . . . . . . . . . . . . . . . . . 213
7.7 Non-Spherical or Inhomogeneous Nanoparticles
in the Quasi-Static Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 216
7.7.1 Shape Effects: Ellipsoids. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 216
7.7.2 Structure Effects: Core–Shell System . . . . . . . . . . . . . . . . . . . . 217
7.8 Optical Response of a Single Metal Nanoparticle . . . . . . . . . . . . . . . . 219
7.9 Electromagnetic Field Enhancement: Applications . . . . . . . . . . . . . . . 221
7.9.1 Nonlinear Optical Response. . . . . . . . . . . . . . . . . . . . . . . . . . . . 221
7.9.2 Time-Resolved Spectroscopy . . . . . . . . . . . . . . . . . . . . . . . . . . . 222
7.9.3 Local Enhancement of Raman Scattering: SERS . . . . . . . . . . 223
7.10 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 224
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 226
8 Mechanical and Nanomechanical Properties
C. Tromas, M. Verdier, M. Fivel, P. Aubert, S. Labdi, Z.-Q. Feng,
M. Zei, P. Joli .................................................. 229
8.1 Macroscopic Mechanical Properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . 229
8.1.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 229
8.1.2 Elastic Properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 229
8.1.3 Hardness . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 231
8.1.4 Ductility . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 234
8.1.5 Numerical Modelling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 236
8.2 Nanomechanical Properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 238
8.2.1 Experimentation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 238
8.2.2 Computer Modelling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 254
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 265
9 Superplasticity
T. Rouxel ....................................................... 269
9.1 Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 269
9.2 Mechanism . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 270
9.3 Superplastic Nanostructured Materials . . . . . . . . . . . . . . . . . . . . . . . . . 276
9.4 Industrial Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 277
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 280
Contents XV
10 Reactivity of Metal Nanoparticles
J.-C. Bertolini, J.-L. Rousset ...................................... 281
10.1 Size Effects. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 282
10.1.1 Structural Properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 282
10.1.2 Electronic Properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 286
10.1.3 Reactivity in Chemisorption and Catalysis
of Monometallic Nanoparticles . . . . . . . . . . . . . . . . . . . . . . . . . 288
10.2 Support Effects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 293
10.3 Alloying Effects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 295
10.3.1 Effect of Surface Segregation . . . . . . . . . . . . . . . . . . . . . . . . . . . 296
10.3.2 Geometric Effects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 297
10.3.3 Electronic Effects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 298
10.4 Preparation and Implementation in the Laboratory
and in Industry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 299
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 302
11 Inverse Systems – Nanoporous Solids
J. Patarin, O. Spalla, F. Di Renzo ................................. 305
11.1 Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 305
11.2 Nomenclature: The Main Families
of Porous Materials . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 305
11.3 Zeolites and Related Microporous Solids.
Definition and Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 307
11.4 Ordered Mesoporous Solids . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 309
11.5 Disordered Nanoporous Solids . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 311
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 314
12 Inverse Systems – Confined Fluids:
Phase Diagram and Metastability
E. Charlaix, R. Denoyel .......................................... 315
12.1 Displacement of First Order Transitions: Evaporation and
Condensation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 315
12.1.1 Adsorption Isotherms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 315
12.1.2 Capillary Condensation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 317
12.1.3 Capillary Pressure and the Kelvin Radius . . . . . . . . . . . . . . . 319
12.1.4 Non-Wetting Fluid . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 320
12.1.5 Perfectly Wetting Fluid . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 320
12.1.6 Hysteresis, Metastability and Nucleation . . . . . . . . . . . . . . . . 322
12.2 Melting–Solidification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 325
12.3 Modification of the Critical Temperature . . . . . . . . . . . . . . . . . . . . . . . 329
12.4 Ultraconfinement: Microporous Materials . . . . . . . . . . . . . . . . . . . . . . 331
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 334
XVI Contents
13 Supramolecular Chemistry: Applications and Prospects
N. Solladi´e, J.-F. Nierengarten .................................... 335
13.1 From Molecular to Supramolecular Chemistry . . . . . . . . . . . . . . . . . . 335
13.2 Molecular Recognition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 335
13.3 Anionic Coordination Chemistry
and Recognition of Anionic Substrates . . . . . . . . . . . . . . . . . . . . . . . . . 338
13.4 Multiple Recognition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 338
13.5 Applications. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 341
13.6 Prospects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 343
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 344
14 Nanocomposites: The End of Compromise
H. Van Damme .................................................. 347
14.1 Composites and Nanocomposites . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 347
14.2 Introduction to Polymers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 351
14.2.1 Ideal Chains . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 352
14.2.2 The Glass Transition. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 354
14.2.3 Entropic Elasticity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 357
14.3 Nanofillers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 359
14.3.1 Clays . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 359
14.3.2 Carbon Nanotubes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 363
14.4 Strengthening and Permeability Control: Models . . . . . . . . . . . . . . . . 364
14.4.1 Strengthening: Increasing the Modulus . . . . . . . . . . . . . . . . . . 364
14.4.2 Impermeability: Reducing the Diffusivity . . . . . . . . . . . . . . . . 367
14.5 Strengthening and Permeability
of Nanocomposites: Facts and Explanations . . . . . . . . . . . . . . . . . . . . 369
14.5.1 Strengthening: Successes and Failures . . . . . . . . . . . . . . . . . . . 369
14.5.2 Impermeability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 376
14.5.3 Dimensional Stability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 377
14.5.4 Fire Resistance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 379
14.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 379
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 380
Part III Synthesis of Nanomaterials and Nanoparticles
15 Specific Features of Nanoscale Growth
J. Livage, D. Roux ............................................... 383
15.1 Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 383
15.2 Thermodynamics of Phase Transitions . . . . . . . . . . . . . . . . . . . . . . . . . 383
15.3 Dynamics of Phase Transitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 385
15.3.1 Thermodynamics of Spinodal Decomposition . . . . . . . . . . . . . 386
15.3.2 Thermodynamics of Nucleation–Growth . . . . . . . . . . . . . . . . . 388
15.4 Size Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 389
15.5 Triggering the Phase Transition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 391