Thư viện tri thức trực tuyến
Kho tài liệu với 50,000+ tài liệu học thuật
© 2023 Siêu thị PDF - Kho tài liệu học thuật hàng đầu Việt Nam

Motion design of cam mechanisms by using non-uniform rational B-spline
Nội dung xem thử
Mô tả chi tiết
Motion Design of Cam Mechanisms
by Using Non-Uniform Rational B-Spline
Bewegungskurven von Kurvengetrieben unter
Verwendung von Non-Uniform Rational B-Spline
Von der Fakultät für Maschinenwesen der Rheinisch-Westfälischen
Technischen Hochschule Aachen zur Erlangung des akademischen Grades
einer Doktorin der Ingenieurwissenschaften
genehmigte Dissertation
vorgelegt von
Thi Thanh Nga Nguyen
Berichter: Univ.-Prof. Dr.-Ing. Dr. h. c. (UPT) Burkhard Corves
Außerplanmäßiger Professor Dr.-Ing. Mathias Hüsing
Tag der mündlichen Prüfung: 21. Juni 2018
Diese Dissertation ist auf den Internetseiten der Universitätsbibliothek online verfügbar.
Acknowledgement iii
Acknowledgement
Foremost, I would like to deeply thank my supervisor Prof. Dr.-Ing. Dr. h. c. Burkhard Corves
for giving me an opportunity to be a PhD student at the Institute of Mechanism Theory, Machine
Dynamics and Robotics (IGMR). I am grateful for his helpful guidance, discussions, comments,
and suggestions on the whole thesis.
Furthermore, I would like to specially thank Prof. Dr.-Ing. Mathias Hüsing as the second
supervisor for giving me important comments, suggestions and encouragements. He also
supported me a chance to be a student job at IGMR.
My big thanks go to Dr.-Ing. Stefan Kurtenbach for his time. He gave me not only many useful
discussions and comments from the start to the end of my thesis but also many valuable
experiences in the research.
I would say to thank Dr.-Ing. Duong Xuan Thang, working at Aachen Institute for Advanced
Study in Computational Engineering Science (AICES), for carefully reading my thesis.
Especially, I would like to thank Prof. Dr-Ing. Rüdiger Schmidt for introducing me to IGMR
to study in the RWTH - Aachen University, Germany.
I would like to thank Mrs. Schneider for helping me administrative procedures at IGMR. Many
thanks go to all my colleagues at IGMR for their warmth and for helping me during the PhD
student’s life.
I would like to thank the Ministry of Education and Training (MOET) of Vietnamese
government for supporting me the living expense during my study time in Germany.
Last but not least, my greatest thanks go to my two litter daughters, Pham Khanh Linh and
Pham Bao Linh, for their love and for understanding me far away from home. I would specially
thank to my mother-in-law and my husband for taking care my daughters during my study time
in Germany.
Aachen, July 2018
Thi Thanh Nga Nguyen
iv Acknowledgement
Abstract v
Abstract
The follower of cam mechanisms may flexibly perform its movement based on the shape of the
cam element and the direct contact with the cam. With this feature, it is convenient to design a
cam mechanism when an output motion is given by working requirements of machines.
The follower motion is characterized by the displacement, velocity, acceleration, and jerk
functions. The acceleration is related to inertial forces of the follower. When an acceleration
curve has abrupt changes, i.e., peak values, this will lead to large inertial forces. Therefore,
contact stresses at the bearing and on the cam surface also change abruptly, which causes noise
and surface wear. Additionally, the peak value of the jerk curve is also important in cam design
since it determines the tendency of vibration in cam-follower systems. Thus, selecting a
mathematic function to describe the motion of the follower is an important step in cam design.
In this thesis, Non-Uniform Rational B-Spline (NURBS) is used to describe motion curves of
the follower. With the properties of NURBS, the motion curves including peak values of the
acceleration and jerk are shown to have advantageous characteristics compared to classical
approaches.
To do this, the displacement, velocity, acceleration, and jerk functions are represented by
NURBS curves. These curves are then determined by solving the system of linear equations
under given boundary conditions of the displacement, velocity, acceleration, and jerk.
Moreover, the main advantage of NURBS compared with other functions is that the NURBS
curve can be controlled by its parameters such as weights and the knot vector. In this thesis, the
computation of the knot vector is presented to evaluate its effect on motion curves.
Furthermore, finding values of the weight factor to reduce peak values of the acceleration and
jerk, the multi-objective functions depended on the weight factor are expressed. For solving
this problem, the simulated annealing algorithm is used to get the optimal value of weights.
Results of this thesis demonstrate that using NURBS for synthesizing motion curves is robust
and effective because this may apply any motion curves of cam-follower systems. In addition,
the kinematics of cam mechanisms is improved by controlling NURBS’s parameters.
vi Abstract
Zusammenfassung vii
Zusammenfassung
Das Eingriffsglied von Kurvengelenken kann seine Bewegung basierend auf der Geometrie der
Kurvenscheibe und dem direkten Kontakt mit der Kurvenscheibe flexibel ausführen. Wegen
dieser Eigenschaft ist es zweckmäßig ein Kurvengelenk zu entwerfen, wenn die
Abtriebsbewegung durch die Betriebsanforderungen einer Maschine gegeben sind.
Die Bewegung des Eingriffsglieds wird charakterisiert durch die Auslenkungs-,
Geschwindigkeits-, Beschleunigungs- und Ruckfunktionen. Die Beschleunigung steht in
Verbindung mit den Trägheitskräften des Eingriffsglieds. Wenn eine Beschleunigungskurve
abrupte Wechsel hat, beispielsweise Spitzenwerte, wird dies zu großen Trägheitskräften führen.
Daher wechseln Kontaktbelastungen im Lager und auf der Kurvenscheibenoberfläche ebenfalls
abrupt, was Geräusche und Oberflächenverschleiß erzeugt. Es kommt hinzu, dass der
Spitzenwert der Ruckkurve auch wichtig bei der Kurvengelenkgestaltung ist, denn er bestimmt
die Tendenz zu Vibrationen des Kurvenscheiben-Eingriffsglied-Systems. Daraus folgt, dass die
Auswahl einer mathematischen Funktion zur Beschreibung der Eingriffsgliedsbewegung ein
wichtiger Schritt der Kurvengelenkgestaltung ist. In dieser Arbeit werden nicht-uniforme
rationale B-Splines (NURBS) zur Beschreibung der Bewegungskurve des Eingriffsglieds
genutzt. Mit Hilfe der Eigenschaften von NURBS wird gezeigt, dass Bewegungskurven, die
Spitzenwerte von Beschleunigung und Ruck beinhalten vorteilhafte Charakteristiken
gegenüber klassischen Ansätzen aufweisen.
Dazu werden die Auslenkungs-, Geschwindigkeits-, Beschleunigungs- und Ruckfunktionen als
NURBS-Kurven dargestellt. Diese Kurven werden im Anschluss bestimmt, indem das lineare
Gleichungssystem unter den gegebenen Randbedigungen von Auslenkung, Geschwindigkeit,
Beschleunigung und Ruck gelöst wird. Ferner ist der Hauptvorteil von NURBS verglichen mit
anderen Funktionen, dass die NURBS-Kurve durch ihre Parameter wie Gewichtungen und den
Knotenvektor kontrolliert werden kann. In dieser Arbeit wird die Berechnung des
Knotenvektors vorgestellt um seine seinen Effekt auf Bewegungskurven zu bewerten.
Außerdem werden, um Werte für den Gewichtungsfaktor zu finden, die Spitzenwerte von
Beschleunigung und Ruck reduzieren, von dem Gewichtungsfaktor abhängige multikriterielle
Funktionen formuliert. Um dieses Problem zu lösen wird der Simulated AnnealingAlgorithmus genutzt, um den optimalen Werte der Gewichtungen zu erhalten.
Ergebnisse dieser Arbeiten zeigen, dass NURBS für das Synthetisieren von Bewegungskurven
robust und effektiv ist, da sie auf jegliche Bewegungskurven von Kurvenscheiben-
viii Zusammenfassung
Eingriffsglied-Systemen angewandt werden können. Zusätzlich wird die Kinematik von
Kurvengetrieben durch die Einstellung der Parameter der NURBS verbessert.
Content List ix
Content List
Acknowledgement....................................................................................................................iii
Abstract .....................................................................................................................................v
Zusammenfassung ..................................................................................................................vii
Equation Signs and Indices...................................................................................................xiii
Abbreviations........................................................................................................................xvii
1 Introduction..........................................................................................................................1
1.1 Motivation................................................................................................................1
1.2 Research objective and scope ..................................................................................4
1.3 Thesis outline...........................................................................................................4
2 State of the Art.....................................................................................................................7
2.1 Cam - follower system.............................................................................................7
2.1.1 Cam and follower classification ..............................................................................7
2.1.2 Displacement program...........................................................................................10
2.2 Follower displacement function ............................................................................11
2.2.1 Polynomial for motion curves ...............................................................................11
2.2.2 Harmonic and cycloidal functions.........................................................................15
2.2.3 Piecewise polynomials...........................................................................................18
2.2.4 Bezier curve ...........................................................................................................20
2.2.5 B-spline..................................................................................................................22
2.2.6 NURBS..................................................................................................................25
2.3 Summary and deficits............................................................................................27
3 General Synthesis of Motion Curves Using NURBS ......................................................29
3.1 Description of NURBS for motion curves.............................................................29
3.2 General synthesis of cam motion using NURBS...................................................35
3.3 Selecting the degree of NURBS used for motion curves ......................................37
3.4 Evaluating weights to motion curves.....................................................................38
3.5 Summary................................................................................................................40
4 Effect of the Knot Vector on Motion Curves ..................................................................43
4.1 Introduction to the knot vector ..............................................................................43
x Content List
4.2 Computation of the knot vector for synthesizing cam motion ..............................46
4.2.1 Parameter calculation.............................................................................................47
4.2.2 Knot vector generation for cam motion.................................................................49
4.2.3 Effect of the power �� on motion curve..................................................................50
4.2.4 Parameter and knot distribution.............................................................................57
4.3 Motion curve evaluation........................................................................................64
4.4 Summary................................................................................................................68
5 Optimizing Weight Factor of Motion Curves by Considering Kinematics..................69
5.1 Optimization problem............................................................................................69
5.2 Multi-objective optimization of motion curves.....................................................70
5.3 Summary................................................................................................................73
6 Simulated Annealing Algorithm for Optimizing Kinematics of Motion Curves.........74
6.1 Methodology of Simulated Annealing...................................................................74
6.1.1 Introduction to simulated annealing ......................................................................74
6.1.2 Physical annealing .................................................................................................75
6.1.3 Simulated annealing algorithm..............................................................................77
6.1.4 Cooling schedule ...................................................................................................79
6.1.5 Generation of neighboring solutions .....................................................................81
6.2 Process of multi-objective optimization by Simulated Annealing for motion curves
...........................................................................................................................82
6.3 Simulated Annealing algorithm for motion curve optimization............................85
6.4 Summary................................................................................................................88
7 Application Examples........................................................................................................90
7.1 Application for a small number of boundary conditions.......................................90
7.1.1 Six boundary conditions........................................................................................90
7.1.2 Eight boundary conditions.....................................................................................92
7.1.3 Nine boundary conditions......................................................................................93
7.1.4 Cam drive engine...................................................................................................94
7.2 Application for a large number of boundary conditions........................................97
7.2.1 Cutting machine.....................................................................................................98
7.2.2 Cam with twenty boundary conditions..................................................................99
7.2.3 Cam mock heart...................................................................................................102
Content List xi
7.2.4 Fourier analysis....................................................................................................107
7.3 Summary..............................................................................................................108
8 Conclusion and Outlook..................................................................................................110
8.1 Conclusion ...........................................................................................................110
8.2 Outlook ................................................................................................................112
List of Figures...................................................................................................................CXIV
List of Tables..................................................................................................................CXVIII
References........................................................................................................................... CXX
Appendix .....................................................................................................................CXXXIV
xii Content List
Equation Signs and Indices xiii
Equation Signs and Indices
Latin Small Letters
y Displacement function [mm or rad]
e Eccentricity [mm]
u Angle of camshaft [rad or degree]
a Lower angle of camshaft [rad or degree]
b Upper angle of camshaft [rad or degree]
n Number of boudary conditions [ - ]
p Degree of functions [ - ]
m Number of knots [ - ]
���� Weights [ - ]
d Number of displacement boundary conditions [ - ]
e Number of velocity boundary conditions [ - ]
f Number of acceleration boundary conditions [ - ]
g Number of jerk boundary conditions [ - ]
���� Parameters [ - ]
s Displacement [mm]
s Velocity [mm/rad]
s Acceleration [mm/rad2
]
s Jerk [mm/rad3
]
t Parameter vector [ - ]
���� Variables [ - ]
x Variable vector [ - ]
hi(x) Equality of constraints [ - ]
gj(x) Inequality of constraints [ - ]
f(x) Opjective function on x [ - ]
f(W) Opjective function on W [ - ]
f1(W) Objective funtion of acceleration [ - ]
f2(W) Objective funtion of jerk [ - ]
upeak_acc Position at maximum acceleration [ - ]
xiv Equation Signs and Indices
upeak_jerk Position at maximum jerk [ - ]
f Difference of cost function [ - ]
kB Boltzmann constant
Latin Capital Letters
O Point [ - ]
A Coefficient of harmonic and cycloidal functions [ - ]
B Coefficient of harmonic and cycloidal functions [ - ]
C Coefficient of harmonic and cycloidal functions [ - ]
D Coefficient of harmonic and cycloidal functions [ - ]
E Coefficient of the cycloidal function [ - ]
V Velocity [mm/rad]
���� Radius of pitch circle [mm]
C(u) Displacement function [length or rad or degree]
C
1
(u) Velocity function [mm/rad]
C
2
(u) Acceleration function [mm/rad2
]
C
3
(u) Jerk function [mm/rad3
]
N(u) B-spline basis function [ - ]
N
1
(u) The first derivative of B-spline basis function [ - ]
N
2
(u) The second derivative of B-spline basis function [ - ]
N
3
(u) The third derivative of B-spline basis function [ - ]
R(u) Rational basis function [ - ]
R
1
(u) The first derivative of Rational basis function [ - ]
R
2
(u) The second derivative of Rational basis function [ - ]
R
3
(u) The third derivative of Rational basis function [ - ]
���� Control points [ - ]
U Knot vector [ - ]
D Vector of input angle [ - ]
����
Input data [ - ]
G Objective function [ - ]
Equation Signs and Indices xv
T0 Initial control parameter [ - ]
T Control parameter (Temperature) [ - ]
Tmin Stopping criterion of control parameter [ - ]
R Matrix with size n x n [ - ]
C Vector of boundary condition [ - ]
P Vector of control point [ - ]
W Weight vector [ - ]
��0
Initial solution of the weight factor [ - ]
���� Current solution of the weight factor [ - ]
Ei Energy at state i [ - ]
Ej Energy at state j [ - ]
E Difference energy between two states [ - ]
P(si) Probability at state i [ - ]
Xi State i [ - ]
Xj State j [ - ]
G(W) Objective function [ - ]
Ni Number of iterations at state i [ - ]
Greek Small Letters
α Coefficient [ - ]
Coefficient [ - ]
One cycle of input motion [rad or degree]
A small fraction [ - ]
Angle of camshaft [rad or degree]
∆�� Difference of the objective function [ - ]