Thư viện tri thức trực tuyến
Kho tài liệu với 50,000+ tài liệu học thuật
© 2023 Siêu thị PDF - Kho tài liệu học thuật hàng đầu Việt Nam

Modern engineering thermodynamics
Nội dung xem thử
Mô tả chi tiết
Modern Engineering
Thermodynamics
This page intentionally left blank
Modern Engineering
Thermodynamics
Robert T. Balmer
AMSTERDAM • BOSTON • HEIDELBERG • LONDON
NEW YORK • OXFORD • PARIS • SAN DIEGO
SAN FRANCISCO • SINGAPORE • SYDNEY • TOKYO
Academic Press is an imprint of Elsevier
Academic Press is an imprint of Elsevier
30 Corporate Drive, Suite 400, Burlington, MA 01803, USA
The Boulevard, Langford Lane, Kidlington, Oxford, OX5 1GB, UK
© 2011 Elsevier Inc. All rights reserved.
No part of this publication may be reproduced or transmitted in any form or by any means, electronic or mechanical,
including photocopying, recording, or any information storage and retrieval system, without permission in writing
from the publisher. Details on how to seek permission, further information about the Publisher’s permissions policies
and our arrangements with organizations such as the Copyright Clearance Center and the Copyright Licensing Agency,
can be found at our website: www.elsevier.com/permissions.
This book and the individual contributions contained in it are protected under copyright by the Publisher (other than
as may be noted herein).
Notices
Knowledge and best practice in this field are constantly changing. As new research and experience broaden our
understanding, changes in research methods, professional practices, or medical treatment may become necessary.
Practitioners and researchers must always rely on their own experience and knowledge in evaluating and using any
information, methods, compounds, or experiments described herein. In using such information or methods they
should be mindful of their own safety and the safety of others, including parties for whom they have a professional
responsibility.
To the fullest extent of the law, neither the Publisher nor the authors, contributors, or editors, assume any liability for
any injury and/or damage to persons or property as a matter of products liability, negligence or otherwise, or from any
use or operation of any methods, products, instructions, or ideas contained in the material herein.
Library of Congress Cataloging-in-Publication Data
Balmer, Robert T.
Modern engineering thermodynamics / Robert T. Balmer
p. cm.
ISBN 978-0-12-374996-3
1. Thermodynamics. I. Title.
TJ265.B196 2010
621.402'1–dc22 2010034092
British Library Cataloguing-in-Publication Data
A catalogue record for this book is available from the British Library.
For information on all Academic Press publications,
visit our website: www.elsevierdirect.com
Typeset by: diacriTech, India
Printed in the United States of America
10 11 12 13 6 5 4 3 2 1
Dedication
WHAT IS AN ENGINEER AND WHAT DO ENGINEERS DO?
The answer is in the word itself. An er word ending means “the practice of.” For example, a farmer farms, a
baker bakes, a singer sings, a driver drives, and so forth. But what does an engineer do? Do they engine? Yes they
do! The word engine comes from the Latin ingenerare, meaning “to create.“
About 2000 years ago, the Latin word ingenium was used to describe the design of a new machine. Soon after,
the word ingen was being used to describe all machines. In English, “ingen” was spelled “engine” and people
who designed creative things were known as “engine-ers”. In French, German, and Spanish today, the word for
engineer is ingenieur.
So What Is an Engineer?
An engineer is a creative and ingenious person.
What Does an Engineer Do?
Engineers create ingenious solutions to society’s problems.
This Book Is Dedicated to All the Future Engineers of the World.
v
This page intentionally left blank
Contents
PREFACE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xiii
ACKNOWLEDGMENTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xvii
RESOURCES THAT ACCOMPANY THIS BOOK . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xix
LIST OF SYMBOLS. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xxi
PROLOGUE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xxiii
CHAPTER 1 The Beginning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.1 What Is Thermodynamics?. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1
1.2 Why Is Thermodynamics Important Today?. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .2
1.3 Getting Answers: A Basic Problem Solving Technique . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .4
1.4 Units and Dimensions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .6
1.5 How Do We Measure Things? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .6
1.6 Temperature Units . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .8
1.7 Classical Mechanical and Electrical Units Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
1.8 Chemical Units. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
1.9 Modern Units Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
1.10 Significant Figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
1.11 Potential and Kinetic Energies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
CHAPTER 2 Thermodynamic Concepts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
2.2 The Language of Thermodynamics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
2.3 Phases of Matter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
2.4 System States and Thermodynamic Properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
2.5 Thermodynamic Equilibrium . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
2.6 Thermodynamic Processes. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
2.7 Pressure and Temperature Scales . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
2.8 The Zeroth Law of Thermodynamics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
2.9 The Continuum Hypothesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
2.10 The Balance Concept . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
2.11 The Conservation Concept. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
2.12 Conservation of Mass. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
CHAPTER 3 Thermodynamic Properties. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
3.1 The Trees and The Forest . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
3.2 Why are Thermodynamic Property Values Important?. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
3.3 Fun with Mathematics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
3.4 Some Exciting New Thermodynamic Properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
3.5 System Energy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
3.6 Enthalpy. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
3.7 Phase Diagrams . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
3.8 Quality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
vii
3.9 Thermodynamic Equations of State . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
3.10 Thermodynamic Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
3.11 How Do You Determine the “Thermodynamic State”?. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86
3.12 Thermodynamic Charts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
3.13 Thermodynamic Property Software . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89
Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90
CHAPTER 4 The First Law of Thermodynamics and Energy Transport Mechanisms . . . . . . . . . . . 99
4.1 Introducción (Introduction). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100
4.2 Emmy Noether and the Conservation Laws of Physics . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100
4.3 The First Law of Thermodynamics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101
4.4 Energy Transport Mechanisms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104
4.5 Point and Path Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107
4.6 Mechanical Work Modes of Energy Transport . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108
4.7 Nonmechanical Work Modes of Energy Transport . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116
4.8 Power Modes of Energy Transport. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124
4.9 Work Efficiency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124
4.10 The Local Equilibrium Postulate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126
4.11 The State Postulate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127
4.12 Heat Modes of Energy Transport . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127
4.13 Heat Transfer Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128
4.14 A Thermodynamic Problem Solving Technique . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130
4.15 How to Write a Thermodynamics Problem. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134
Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138
CHAPTER 5 First Law Closed System Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147
5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147
5.2 Sealed, Rigid Containers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148
5.3 Electrical Devices. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150
5.4 Power Plants . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151
5.5 Incompressible Liquids . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152
5.6 Ideal Gases . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 154
5.7 Piston-Cylinder Devices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155
5.8 Closed System Unsteady State Processes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157
5.9 The Explosive Energy of Pressure Vessels . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159
Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 160
CHAPTER 6 First Law Open System Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 167
6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 167
6.2 Mass Flow Energy Transport. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 168
6.3 Conservation of Energy and Conservation of Mass Equations for Open Systems . . . . . . . . 171
6.4 Flow Stream Specific Kinetic and Potential Energies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 173
6.5 Nozzles and Diffusers. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 174
6.6 Throttling Devices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 179
6.7 Throttling Calorimeter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 182
6.8 Heat Exchangers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 184
6.9 Shaft Work Machines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 187
6.10 Open System Unsteady State Processes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 190
Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 197
CHAPTER 7 Second Law of Thermodynamics and Entropy Transport
and Production Mechanisms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .205
7.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 205
7.2 What Is Entropy? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 206
7.3 The Second Law of Thermodynamics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 207
7.4 Carnot’s Heat Engine and the Second Law of Thermodynamics . . . . . . . . . . . . . . . . . . . . . 208
7.5 The Absolute Temperature Scale . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 212
viii Contents
7.6 Heat Engines Running Backward . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 216
7.7 Clausius’s Definition of Entropy. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 218
7.8 Numerical Values for Entropy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 221
7.9 Entropy Transport Mechanisms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 227
7.10 Differential Entropy Balance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 227
7.11 Heat Transport of Entropy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 229
7.12 Work Mode Transport of Entropy. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 231
7.13 Entropy Production Mechanisms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 231
7.14 Heat Transfer Production of Entropy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 232
7.15 Work Mode Production of Entropy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 235
7.16 Phase Change Entropy Production. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 239
7.17 Entropy Balance and Entropy Rate Balance Equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . 240
Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 241
CHAPTER 8 Second Law Closed System Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 249
8.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 249
8.2 Systems Undergoing Reversible Processes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 250
8.3 Systems Undergoing Irreversible Processes. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 256
8.4 Diffusional Mixing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 271
Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 273
CHAPTER 9 Second Law Open System Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 279
9.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 279
9.2 Mass Flow Transport of Entropy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 279
9.3 Mass Flow Production of Entropy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 280
9.4 Open System Entropy Balance Equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 280
9.5 Nozzles, Diffusers, and Throttles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 284
9.6 Heat Exchangers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 289
9.7 Mixing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 293
9.8 Shaft Work Machines. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 296
9.9 Unsteady State Processes in Open Systems. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 297
Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 308
Final Comments on the Second Law . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 310
CHAPTER 10 Availability Analysis. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 319
10.1 What Is Availability? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 319
10.2 Fun with Scalar, Vector, and Conservative Fields . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 320
10.3 What are Conservative Forces? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 321
10.4 Maximum Reversible Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 322
10.5 Local Environment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 322
10.6 Availability. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 323
10.7 Closed System Availability Balance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 327
10.8 Flow Availability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 331
10.9 Open System Availability Rate Balance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 334
10.10 Modified Availability Rate Balance Equation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 335
10.11 Energy Efficiency Based on the Second Law . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 339
Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 351
CHAPTER 11 More Thermodynamic Relations. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 361
11.1 Kynning (Introduction) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 361
11.2 Two New Properties: Helmholtz and Gibbs Functions. . . . . . . . . . . . . . . . . . . . . . . . . . . . 362
11.3 Gibbs Phase Equilibrium Condition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 366
11.4 Maxwell Equations. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 367
11.5 The Clapeyron Equation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 370
11.6 Determining u, h, and s from p, v, and T . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 372
11.7 Constructing Tables and Charts. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 378
11.8 Thermodynamic Charts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 380
Contents ix
11.9 Gas Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 382
11.10 Compressibility Factor and Generalized Charts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 384
11.11 Is Steam Ever an Ideal Gas?. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 396
Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 398
CHAPTER 12 Mixtures of Gases and Vapors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 405
12.1 Wprowadzenie (Introduction). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 405
12.2 Thermodynamic Properties of Gas Mixtures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 406
12.3 Mixtures of Ideal Gases . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 412
12.4 Psychrometrics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 417
12.5 The Adiabatic Saturator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 420
12.6 The Sling Psychrometer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 421
12.7 Air Conditioning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 424
12.8 Psychrometric Enthalpies. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 426
12.9 Mixtures of Real Gases . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 430
Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 438
CHAPTER 13 Vapor and Gas Power Cycles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 447
13.1 Bevezetésének (Introduction) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 448
13.2 Part I. Engines and Vapor Power Cycles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 448
13.3 Carnot Power Cycle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 456
13.4 Rankine Cycle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 457
13.5 Operating Efficiencies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 459
13.6 Rankine Cycle with Superheat . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 466
13.7 Rankine Cycle with Regeneration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 469
13.8 The Development of the Steam Turbine. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 474
13.9 Rankine Cycle with Reheat . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 477
13.10 Modern Steam Power Plants . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 480
13.11 Part II. Gas Power Cycles. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 486
13.12 Air Standard Power Cycles. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 486
13.13 Stirling Cycle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 488
13.14 Ericsson Cycle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 490
13.15 Lenoir Cycle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 493
13.16 Brayton Cycle. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 495
13.17 Aircraft Gas Turbine Engines. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 499
13.18 Otto Cycle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 502
13.19 Atkinson Cycle. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 508
13.20 Miller Cycle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 509
13.21 Diesel Cycle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 512
13.22 Modern Prime Mover Developments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 516
13.23 Second Law Analysis of Vapor and Gas Power Cycles. . . . . . . . . . . . . . . . . . . . . . . . . .518
Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 525
CHAPTER 14 Vapor and Gas Refrigeration Cycles. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 535
14.1 Introduksjon (Introduction). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 535
14.2 Part I. Vapor Refrigeration Cycles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 536
14.3 Carnot Refrigeration Cycle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 537
14.4 In the Beginning There Was Ice. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 539
14.5 Vapor-Compression Refrigeration Cycle. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 542
14.6 Refrigerants . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 547
14.7 Refrigerant Numbers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 549
14.8 CFCs and the Ozone Layer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 552
14.9 Cascade and Multistage Vapor-Compression Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . 554
14.10 Absorption Refrigeration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 560
14.11 Commercial and Household Refrigerators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 562
14.12 Part II. Gas Refrigeration Cycles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 568
x Contents
14.13 Air Standard Gas Refrigeration Cycles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 568
14.14 Reversed Brayton Cycle Refrigeration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 569
14.15 Reversed Stirling Cycle Refrigeration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 572
14.16 Miscellaneous Refrigeration Technologies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 575
14.17 Future Refrigeration Needs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 578
14.18 Second Law Analysis of Refrigeration Cycles. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 579
Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 582
CHAPTER 15 Chemical Thermodynamics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 591
15.1 Einführung (Introduction). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 591
15.2 Stoichiometric Equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 593
15.3 Organic Fuels. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 596
15.4 Fuel Modeling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 599
15.5 Standard Reference State . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 603
15.6 Heat of Formation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 604
15.7 Heat of Reaction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 607
15.8 Adiabatic Flame Temperature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 613
15.9 Maximum Explosion Pressure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 619
15.10 Entropy Production in Chemical Reactions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 621
15.11 Entropy of Formation and Gibbs Function of Formation. . . . . . . . . . . . . . . . . . . . . . . . . . . 625
15.12 Chemical Equilibrium and Dissociation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 626
15.13 Rules for Chemical Equilibrium Constants . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 634
15.14 The van’t Hoff Equation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 635
15.15 Fuel Cells . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 636
15.16 Chemical Availability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 641
Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 642
CHAPTER 16 Compressible Fluid Flow . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 651
16.1 Introducerea (Introduction). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 651
16.2 Stagnation Properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 652
16.3 Isentropic Stagnation Properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 653
16.4 The Mach Number . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 655
16.5 Converging-Diverging Flows . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 660
16.6 Choked Flow . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 665
16.7 Reynolds Transport Theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 669
16.8 Linear Momentum Rate Balance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 673
16.9 Shock Waves . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 675
16.10 Nozzle and Diffuser Efficiencies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 681
Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 685
CHAPTER 17 Thermodynamics of Biological Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 693
17.1 Introdução (Introduction) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 693
17.2 Living Systems. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 693
17.3 Thermodynamics of Biological Cells. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 695
17.4 Energy Conversion Efficiency of Biological Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 699
17.5 Metabolism . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 702
17.6 Thermodynamics of Nutrition and Exercise . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 705
17.7 Limits to Biological Growth . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 711
17.8 Locomotion Transport Number . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 714
17.9 Thermodynamics of Aging and Death . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 716
Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 721
CHAPTER 18 Introduction to Statistical Thermodynamics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 727
18.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 727
18.2 Why Use a Statistical Approach? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 728
18.3 Kinetic Theory of Gases . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 728
18.4 Intermolecular Collisions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 732
Contents xi
18.5 Molecular Velocity Distributions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 734
18.6 Equipartition of Energy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 738
18.7 Introduction to Mathematical Probability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 741
18.8 Quantum Statistical Thermodynamics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 747
18.9 Three Classical Quantum Statistical Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 749
18.10 Maxwell-Boltzmann Gases . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 750
18.11 Monatomic Maxwell-Boltzmann Gases. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 751
18.12 Diatomic Maxwell-Boltzmann Gases . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 753
18.13 Polyatomic Maxwell-Boltzmann Gases . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 756
Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 758
CHAPTER 19 Introduction to Coupled Phenomena . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 763
19.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 763
19.2 Coupled Phenomena . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 763
19.3 Linear Phenomenological Equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 765
19.4 Thermoelectric Coupling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 767
19.5 Thermomechanical Coupling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 776
Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 783
APPENDIX A Physical Constants and Conversion Factors. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 787
APPENDIX B Greek and Latin Origins of Engineering Terms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 789
INDEX . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 793
xii Contents
Preface
TEXT OBJECTIVES
This textbook has two main objectives. The first is to provide students with a clear presentation of the
fundamental principles of basic and applied engineering thermodynamics. The second is to help students develop
skills as engineering problem solvers by nurturing the development of their confidence with basic engineering
principles through the use of numerous solved example problems. Problem-solving skills are not necessarily
learned simply by routinely solving more and more problems. The understanding of proven problem-solving
strategies and techniques greatly accelerates the development of problem-solving skills. Throughout the text, learning assessment exercises are included that have proven to be effective in helping students to understand and
develop confidence in their ability to solve engineering thermodynamics problems.
To meet these objectives, explanations are occasionally more detailed than those found in other texts, because
common learning difficulties encountered by students have been anticipated. If students can understand the text
by simply reading it, then the instructor has more flexibility in selecting lecture material. For example, an
instructor might choose to develop a few salient points from the reading and then work a few interesting
example problems, rather than present a complete derivation of all the assigned reading material.
CULTURAL INFRASTRUCTURE
What engineers do has an enormous impact on society and the world. Understanding how the great challenges
of engineering were met in the past can help students understand the importance of the theory and practice of
modern engineering principles. This text presents the historical background, the current uses, and the future
importance of the thermodynamic topics treated. By understanding where ideas come from, how they were
developed, and what external forces shaped the resulting technology, students will better understand their role
as engineers of the future.
Engineering is an exciting and rewarding career. However, students occasionally become disenchanted with their
engineering course work because they are unable to see the connection between what they are studying and
what an engineer really does. To combat this problem, the thermodynamic concepts in this text are presented in
a straightforward logical manner, and then applied to real-world engineering situations that are both timely and
interesting.
TEXT COVERAGE
This text was designed for use in a standard two-semester engineering thermodynamics course sequence. The first
part of the text (Chapters 1–10) contains material suitable for a Basic Thermodynamics course that can be taken
by engineers from all majors. The second part of the text was designed for an Applied Thermodynamics course
in a mechanical engineering program. Chapters 17, 18, and 19 present several unique topics (biothermodynamics, statistical thermodynamics, and coupled phenomena) for those wishing to glimpse the future of the
subject.
xiii
TEXT FEATURES
1. Style. To make the subject as understandable as possible, the writing is somewhat conversational and the
importance of the subject is evidenced in the enthusiasm of the presentation. The composition of the
engineering student body has been changing in recent years, and it is no longer assumed that the students
are all men and that they inherently understand how technologies (e.g., engines) operate. Consequently, the
operation of basic technologies is explained in the text along with the relevant thermodynamic material.
2. Significant figures. One of the unique features of this text is the treatment of significant figures. Professors
often lament about the number of figures provided by students on their homework and examinations. The
rules for determining the correct number of significant figures are introduced in Chapter 1 and are followed
consistently throughout the text. An example from Chapter 1 follows.
EXAMPLE 1.6
The inside diameter of a circular water pipe is measured with a ruler to two significant figures and is found to be 2.5 inches.
Determine the cross-sectional area of the pipe to the correct number of significant figures.
Solution
The cross-sectional area of a circle is A = πD2
/4, so Apipe = π(2.5 inches)2
/4 = 4.9087 in2
, which must be rounded to 4.9 in2
,
since the least accurate value in this calculation is the pipe diameter (2.5 inches), which has only two significant figures.
3. Chapter overviews. Each chapter begins with an overview of the material contained in the chapter.
4. Problem-solving strategy. A proven technique for solving thermodynamic problems is discussed early in the
text and followed throughout in the solved examples. The technique follows these steps:
5. Solved example problems. Over 200 solved example problems are provided in the text. These examples
were carefully designed to illustrate the preceding text material. A sample from Chapter 5 follows.
EXAMPLE P.1
Read the problem statement. An incandescent lightbulb is a simple electrical device. Using the energy rate balance on a
lightbulb, determine the heat transfer rate of a 100. W incandescent lightbulb.
Solution
Step 1. Identify and sketch the system (see Figure P.1 on the following page).
Step 2. Identify the unknowns. The unknown is Q_ :
Step 3. Identify the type of system. It is a closed system.
Step 4. Identify the process connecting the system states. The bulb does not change its thermodynamic state, so its
properties remain constant. The process path (after the bulb has warmed to its operating temperature) is U = constant.
SUMMARY OF THE THERMODYNAMIC PROBLEMSOLVING TECHNIQUE
Begin by carefully reading the problem statement completely through.
Step 1. Make a sketch of the system and put a dashed line around the system boundary.
Step 2. Identify the unknown(s) and write them on your system sketch.
Step 3. Identify the type of system (closed or open) you have.
Step 4. Identify the process that connects the states or stations.
Step 5. Write down the basic thermodynamic equations and any useful auxiliary equations.
Step 6. Algebraically solve for the unknown(s).
Step 7. Calculate the value(s) of the unknown(s).
Step 8. Check all algebra, calculations, and units.
Sketch → Unknowns → System → Process → Equations → Solve → Calculate → Check
xiv Preface