Thư viện tri thức trực tuyến
Kho tài liệu với 50,000+ tài liệu học thuật
© 2023 Siêu thị PDF - Kho tài liệu học thuật hàng đầu Việt Nam

Modern Electric, Hybrid Electric, and Fuel Cell Vehicles: Fundamentals, Theory, and Design, Second Edition (Power Electronics and Applications Series)
Nội dung xem thử
Mô tả chi tiết
“53981_C000.tex” — page i[#1] 14/8/2009 11:49
“53981_C000.tex” — page ii[#2] 14/8/2009 11:49
“53981_C000.tex” — page iii[#3] 14/8/2009 11:49
“53981_C000.tex” — page iv[#4] 14/8/2009 11:49
CRC Press
Taylor & Francis Group
6000 Broken Sound Parkway NW, Suite 300
Boca Raton, FL 33487-2742
© 2010 by Taylor and Francis Group, LLC
CRC Press is an imprint of Taylor & Francis Group, an Informa business
No claim to original U.S. Government works
Printed in the United States of America on acid-free paper
10 9 8 7 6 5 4 3 2 1
International Standard Book Number: 978-1-4200-5398-2 (Hardback)
This book contains information obtained from authentic and highly regarded sources. Reasonable
efforts have been made to publish reliable data and information, but the author and publisher cannot
assume responsibility for the validity of all materials or the consequences of their use. The authors and
publishers have attempted to trace the copyright holders of all material reproduced in this publication
and apologize to copyright holders if permission to publish in this form has not been obtained. If any
copyright material has not been acknowledged please write and let us know so we may rectify in any
future reprint.
Except as permitted under U.S. Copyright Law, no part of this book may be reprinted, reproduced,
transmitted, or utilized in any form by any electronic, mechanical, or other means, now known or
hereafter invented, including photocopying, microfilming, and recording, or in any information storage or retrieval system, without written permission from the publishers.
For permission to photocopy or use material electronically from this work, please access www.copyright.com (http://www.copyright.com/) or contact the Copyright Clearance Center, Inc. (CCC), 222
Rosewood Drive, Danvers, MA 01923, 978-750-8400. CCC is a not-for-profit organization that provides licenses and registration for a variety of users. For organizations that have been granted a photocopy license by the CCC, a separate system of payment has been arranged.
Trademark Notice: Product or corporate names may be trademarks or registered trademarks, and are
used only for identification and explanation without intent to infringe.
Visit the Taylor & Francis Web site at
http://www.taylorandfrancis.com
and the CRC Press Web site at
http://www.crcpress.com
“53981_C000.tex” — page v[#5] 14/8/2009 11:49
Contents
Preface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xv
Authors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xix
1 Environmental Impact and History of Modern Transportation .. 1
1.1 Air Pollution ..................................... 1
1.1.1 Nitrogen Oxides ............................. 2
1.1.2 Carbon Monoxide ............................ 2
1.1.3 Unburned HCs .............................. 3
1.1.4 Other Pollutants ............................. 3
1.2 Global Warming .................................. 3
1.3 Petroleum Resources ............................... 5
1.4 Induced Costs .................................... 8
1.5 Importance of Different Transportation
Development Strategies to Future Oil Supply ............ 9
1.6 History of EVs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
1.7 History of HEVs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
1.8 History of Fuel Cell Vehicles . . . . . . . . . . . . . . . . . . . . . . . . . 17
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
2 Fundamentals of Vehicle Propulsion and Brake . . . . . . . . . . . . . . 19
2.1 General Description of Vehicle Movement . . . . . . . . . . . . . . . 19
2.2 Vehicle Resistance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
2.2.1 Rolling Resistance . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
2.2.2 Aerodynamic Drag . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
2.2.3 Grading Resistance . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
2.3 Dynamic Equation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
2.4 Tire–Ground Adhesion and Maximum Tractive Effort . . . . . . 28
2.5 Power Train Tractive Effort and Vehicle Speed . . . . . . . . . . . . 30
2.6 Vehicle Power Plant and Transmission Characteristics . . . . . . 32
2.6.1 Power Plant Characteristics . . . . . . . . . . . . . . . . . . . . . 32
2.6.2 Transmission Characteristics . . . . . . . . . . . . . . . . . . . . 35
2.6.3 Manual Gear Transmission . . . . . . . . . . . . . . . . . . . . . 35
2.6.3.1 Hydrodynamic Transmission . . . . . . . . . . . . . . 38
2.6.3.2 Continuously Variable Transmission . . . . . . . . 42
2.7 Vehicle Performance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
2.7.1 Maximum Speed of a Vehicle . . . . . . . . . . . . . . . . . . . . 43
2.7.2 Gradeability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
2.7.3 Acceleration Performance . . . . . . . . . . . . . . . . . . . . . . 45
v
“53981_C000.tex” — page vi[#6] 14/8/2009 11:49
vi Contents
2.8 Operating Fuel Economy . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
2.8.1 Fuel Economy Characteristics of IC Engines . . . . . . . . . 48
2.8.2 Computation of Vehicle Fuel Economy . . . . . . . . . . . . . 49
2.8.3 Basic Techniques to Improve Vehicle Fuel Economy . . . 51
2.9 Brake Performance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
2.9.1 Braking Force . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
2.9.2 Braking Distribution on Front and Rear Axles . . . . . . . 55
2.9.3 Braking Regulation and Braking
Performance Analysis . . . . . . . . . . . . . . . . . . . . . . . . . 61
2.9.3.1 Braking Regulation . . . . . . . . . . . . . . . . . . . . . 61
2.9.3.2 Braking Performance Analysis . . . . . . . . . . . . . 62
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
3 Internal Combustion Engines . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
3.1 4S, Spark-Ignited IC Engines . . . . . . . . . . . . . . . . . . . . . . . . . 67
3.1.1 Operating Principles . . . . . . . . . . . . . . . . . . . . . . . . . . 67
3.1.2 Operation Parameters . . . . . . . . . . . . . . . . . . . . . . . . . 69
3.1.2.1 Rating Values of Engines . . . . . . . . . . . . . . . . . 69
3.1.2.2 Indicated Work per Cycles and Mean
Effective Pressure . . . . . . . . . . . . . . . . . . . . . . 69
3.1.2.3 Mechanical Efficiency . . . . . . . . . . . . . . . . . . . 71
3.1.2.4 Specific Fuel Consumption and Efficiency . . . . 72
3.1.2.5 Specific Emissions . . . . . . . . . . . . . . . . . . . . . . 73
3.1.2.6 Fuel/Air and Air/Fuel Ratios . . . . . . . . . . . . . 73
3.1.2.7 Volumetric Efficiency . . . . . . . . . . . . . . . . . . . . 74
3.1.3 Relationships between Operation
and Performance Parameters . . . . . . . . . . . . . . . . . . . . 75
3.1.4 Engine Operation Characteristics . . . . . . . . . . . . . . . . 76
3.1.4.1 Engine Performance Parameters . . . . . . . . . . . 76
3.1.4.2 Indicated and Brake Power and Torque . . . . . . 77
3.1.4.3 Fuel Consumption Characteristics . . . . . . . . . . 78
3.1.5 Design and Operating Variables Affecting
SI Engine Performance, Efficiency, and Emission
Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
3.1.5.1 Compression Ratio . . . . . . . . . . . . . . . . . . . . . 79
3.1.5.2 Spark Timing . . . . . . . . . . . . . . . . . . . . . . . . . . 80
3.1.5.3 Fuel/Air Equivalent Ratio . . . . . . . . . . . . . . . . 82
3.1.6 Emission Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
3.1.7 Basic Techniques for Improving Engine Performance,
Efficiency, and Emissions . . . . . . . . . . . . . . . . . . . . . . . 85
3.1.7.1 Forced Induction . . . . . . . . . . . . . . . . . . . . . . . 85
3.1.7.2 Gasoline Direct Injection
and Lean-Burn Engines . . . . . . . . . . . . . . . . . . 86
3.1.7.3 Multi- and Variable-Valve Timing . . . . . . . . . . 86
3.1.7.4 Throttle-Less Torque Control . . . . . . . . . . . . . . 87
3.1.7.5 Variable Compression Ratio . . . . . . . . . . . . . . . 87
“53981_C000.tex” — page vii[#7] 14/8/2009 11:49
Contents vii
3.1.7.6 Exhaust Gas Recirculation . . . . . . . . . . . . . . . . 87
3.1.7.7 Intelligent Ignition . . . . . . . . . . . . . . . . . . . . . . 87
3.1.7.8 New Engine Materials . . . . . . . . . . . . . . . . . . . 87
3.2 4S, Compression-Ignition IC Engines . . . . . . . . . . . . . . . . . . . 88
3.3 2S Engines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89
3.4 Wankel Rotary Engines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93
3.5 Stirling Engines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95
3.6 Gas Turbine Engines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100
3.7 Quasi-Isothermal Brayton Cycle Engines . . . . . . . . . . . . . . . . 103
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104
4 Electric Vehicles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105
4.1 Configurations of EVs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105
4.2 Performance of EVs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108
4.2.1 Traction Motor Characteristics . . . . . . . . . . . . . . . . . . . 108
4.2.2 Tractive Effort and Transmission Requirement . . . . . . . 109
4.2.3 Vehicle Performance . . . . . . . . . . . . . . . . . . . . . . . . . . 112
4.3 Tractive Effort in Normal Driving . . . . . . . . . . . . . . . . . . . . . 115
4.4 Energy Consumption . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122
5 Hybrid Electric Vehicles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123
5.1 Concept of Hybrid Electric Drive Trains . . . . . . . . . . . . . . . . . 123
5.2 Architectures of Hybrid Electric Drive Trains . . . . . . . . . . . . . 126
5.2.1 Series Hybrid Electric Drive Trains
(Electrical Coupling) . . . . . . . . . . . . . . . . . . . . . . . . . . 128
5.2.2 Parallel Hybrid Electric Drive Trains
(Mechanical Coupling) . . . . . . . . . . . . . . . . . . . . . . . . 130
5.2.2.1 Parallel Hybrid Drive Train with Torque
Coupling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132
5.2.2.2 Parallel Hybrid Drive Train with Speed
Coupling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138
5.2.2.3 Hybrid Drive Trains with Both Torque
and Speed Coupling . . . . . . . . . . . . . . . . . . . . 144
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149
6 Electric Propulsion Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151
6.1 DC Motor Drives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 154
6.1.1 Principle of Operation and Performance . . . . . . . . . . . . 154
6.1.2 Combined Armature Voltage and Field Control . . . . . . 158
6.1.3 Chopper Control of DC Motors . . . . . . . . . . . . . . . . . . 158
6.1.4 Multi-Quadrant Control of Chopper-Fed DC
Motor Drives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163
6.1.4.1 Two-Quadrant Control of Forward Motoring
and Regenerative Braking . . . . . . . . . . . . . . . . 164
6.1.4.2 Four-Quadrant Operation . . . . . . . . . . . . . . . . 167
“53981_C000.tex” — page viii[#8] 14/8/2009 11:49
viii Contents
6.2 Induction Motor Drives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 168
6.2.1 Basic Operation Principles of Induction Motors . . . . . . 169
6.2.2 Steady-State Performance . . . . . . . . . . . . . . . . . . . . . . 172
6.2.3 Constant Volt/Hertz Control . . . . . . . . . . . . . . . . . . . . 174
6.2.4 Power Electronic Control . . . . . . . . . . . . . . . . . . . . . . . 176
6.2.5 Field Orientation Control . . . . . . . . . . . . . . . . . . . . . . . 179
6.2.5.1 Field Orientation Principles . . . . . . . . . . . . . . . 179
6.2.5.2 Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 187
6.2.5.3 Direction Rotor Flux Orientation Scheme . . . . . 189
6.2.5.4 Indirect Rotor Flux Orientation Scheme . . . . . . 192
6.2.6 Voltage Source Inverter for FOC . . . . . . . . . . . . . . . . . . 193
6.2.6.1 Voltage Control in Voltage Source Inverter . . . . 195
6.2.6.2 Current Control in Voltage Source Inverter . . . . 198
6.3 Permanent Magnetic BLDC Motor Drives . . . . . . . . . . . . . . . 200
6.3.1 Basic Principles of BLDC Motor Drives . . . . . . . . . . . . 203
6.3.2 BLDC Machine Construction and Classification . . . . . . 203
6.3.3 Properties of PM Materials . . . . . . . . . . . . . . . . . . . . . . 205
6.3.3.1 Alnico . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 206
6.3.3.2 Ferrites . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 208
6.3.3.3 Rare-Earth PMs . . . . . . . . . . . . . . . . . . . . . . . . 208
6.3.4 Performance Analysis and Control
of BLDC Machines . . . . . . . . . . . . . . . . . . . . . . . . . . . . 208
6.3.4.1 Performance Analysis . . . . . . . . . . . . . . . . . . . 209
6.3.4.2 Control of BLDC Motor Drives . . . . . . . . . . . . 211
6.3.5 Extend Speed Technology . . . . . . . . . . . . . . . . . . . . . . 213
6.3.6 Sensorless Techniques . . . . . . . . . . . . . . . . . . . . . . . . . 213
6.3.6.1 Methods Using Measurables and Math . . . . . . 214
6.3.6.2 Methods Using Observers . . . . . . . . . . . . . . . . 215
6.3.6.3 Methods Using Back EMF Sensing . . . . . . . . . . 215
6.3.6.4 Unique Sensorless Techniques . . . . . . . . . . . . . 216
6.4 SRM Drives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 217
6.4.1 Basic Magnetic Structure . . . . . . . . . . . . . . . . . . . . . . . 218
6.4.2 Torque Production . . . . . . . . . . . . . . . . . . . . . . . . . . . . 222
6.4.3 SRM Drive Converter . . . . . . . . . . . . . . . . . . . . . . . . . 224
6.4.4 Modes of Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . 226
6.4.5 Generating Mode of Operation
(Regenerative Braking) . . . . . . . . . . . . . . . . . . . . . . . . 227
6.4.6 Sensorless Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . 230
6.4.6.1 Phase Flux Linkage-Based Method . . . . . . . . . 231
6.4.6.2 Phase Inductance-Based Method . . . . . . . . . . . 232
6.4.6.3 Modulated Signal Injection Methods . . . . . . . . 233
6.4.6.4 Mutual-Induced Voltage-Based Method . . . . . . 236
6.4.6.5 Observer-Based Methods . . . . . . . . . . . . . . . . 236
6.4.7 Self-Tuning Techniques of SRM Drives . . . . . . . . . . . . . 236
“53981_C000.tex” — page ix[#9] 14/8/2009 11:49
Contents ix
6.4.7.1 Self-Tuning with Arithmetic Method . . . . . . . . 237
6.4.7.2 Self-Tuning Using an ANN . . . . . . . . . . . . . . . 238
6.4.8 Vibration and Acoustic Noise in SRM . . . . . . . . . . . . . . 240
6.4.9 SRM Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 243
6.4.9.1 Number of Stator and Rotor Poles . . . . . . . . . . 243
6.4.9.2 Stator Outer Diameter . . . . . . . . . . . . . . . . . . . 244
6.4.9.3 Rotor Outer Diameter . . . . . . . . . . . . . . . . . . . 244
6.4.9.4 Air Gap . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 245
6.4.9.5 Stator Arc . . . . . . . . . . . . . . . . . . . . . . . . . . . . 245
6.4.9.6 Stator Back Iron . . . . . . . . . . . . . . . . . . . . . . . . 245
6.4.9.7 Performance Prediction . . . . . . . . . . . . . . . . . . 246
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 247
7 Design Principle of Series (Electrical Coupling)
Hybrid Electric Drive Train . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 253
7.1 Operation Patterns . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 254
7.2 Control Strategies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 256
7.2.1 Max. SOC-of-PPS Control Strategy . . . . . . . . . . . . . . . 256
7.2.2 Engine On–Off or Thermostat Control Strategy . . . . . . 257
7.3 Design Principles of a Series (Electrical Coupling)
Hybrid Drive Train . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 259
7.3.1 Electrical Coupling Device . . . . . . . . . . . . . . . . . . . . . . 259
7.3.2 Power Rating Design of the Traction Motor . . . . . . . . . 264
7.3.3 Power Rating Design of the Engine/Generator . . . . . . 267
7.3.4 Design of PPS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 270
7.3.4.1 Power Capacity of PPS . . . . . . . . . . . . . . . . . . 271
7.3.4.2 Energy Capacity of PPS . . . . . . . . . . . . . . . . . . 271
7.4 Design Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 272
7.4.1 Design of Traction Motor Size . . . . . . . . . . . . . . . . . . . 272
7.4.2 Design of the Gear Ratio . . . . . . . . . . . . . . . . . . . . . . . 272
7.4.3 Verification of Acceleration Performance . . . . . . . . . . . 273
7.4.4 Verification of Gradeability . . . . . . . . . . . . . . . . . . . . . 274
7.4.5 Design of Engine/Generator Size . . . . . . . . . . . . . . . . 275
7.4.6 Design of the Power Capacity of PPS . . . . . . . . . . . . . . 277
7.4.7 Design of the Energy Capacity of PPS . . . . . . . . . . . . . 277
7.4.8 Fuel Consumption . . . . . . . . . . . . . . . . . . . . . . . . . . . 279
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 279
8 Parallel (Mechanically Coupled) Hybrid
Electric Drive Train Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 281
8.1 Drive Train Configuration and Design Objectives . . . . . . . . . . 281
8.2 Control Strategies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 283
8.2.1 Max. SOC-of-PPS Control Strategy . . . . . . . . . . . . . . . . 284
8.2.2 Engine On–Off (Thermostat) Control Strategy . . . . . . . 287
8.2.3 Constrained Engine On–Off Control Strategy . . . . . . . . 288
“53981_C000.tex” — page x[#10] 14/8/2009 11:49
x Contents
8.2.4 Fuzzy Logic Control Technique . . . . . . . . . . . . . . . . . . 290
8.2.5 Dynamic Programming Technique . . . . . . . . . . . . . . . . 292
8.3 Parametric Design of a Drive Train . . . . . . . . . . . . . . . . . . . . 295
8.3.1 Engine Power Design . . . . . . . . . . . . . . . . . . . . . . . . . 295
8.3.2 Transmission Design . . . . . . . . . . . . . . . . . . . . . . . . . . 298
8.3.3 Electric Motor Drive Power Design . . . . . . . . . . . . . . . 299
8.3.4 PPS Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 302
8.4 Simulations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 305
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 307
9 Design and Control Methodology of Series–Parallel
(Torque and Speed Coupling) Hybrid Drive Train . . . . . . . . . . . . 309
9.1 Drive Train Configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . 309
9.1.1 Speed-Coupling Analysis . . . . . . . . . . . . . . . . . . . . . . . 309
9.1.2 Drive Train Configuration . . . . . . . . . . . . . . . . . . . . . . 313
9.2 Drive Train Control Methodology . . . . . . . . . . . . . . . . . . . . . 320
9.2.1 Control System . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 320
9.2.2 Engine Speed Control Approach . . . . . . . . . . . . . . . . . 320
9.2.3 Traction Torque Control Approach . . . . . . . . . . . . . . . . 321
9.2.4 Drive Train Control Strategies . . . . . . . . . . . . . . . . . . . 323
9.2.4.1 Engine Speed Control Strategy . . . . . . . . . . . . . 323
9.2.4.2 Traction Torque Control Strategy . . . . . . . . . . . 325
9.2.4.3 Regenerative Braking Control . . . . . . . . . . . . . 328
9.3 Drive Train Parameters Design . . . . . . . . . . . . . . . . . . . . . . . 328
9.4 Simulation of an Example Vehicle . . . . . . . . . . . . . . . . . . . . . 329
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 332
10 Design and Control Principles of Plug-In
Hybrid Electric Vehicles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 333
10.1 Statistics of Daily Driving Distance . . . . . . . . . . . . . . . . . . . . 333
10.2 Energy Management Strategy . . . . . . . . . . . . . . . . . . . . . . . . 335
10.2.1 AER-Focused Control Strategy . . . . . . . . . . . . . . . . . 335
10.2.2 Blended Control Strategy . . . . . . . . . . . . . . . . . . . . . 341
10.3 Energy Storage Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 346
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 351
11 Mild Hybrid Electric Drive Train Design . . . . . . . . . . . . . . . . . . . 353
11.1 Energy Consumed in Braking and Transmission . . . . . . . . . . 353
11.2 Parallel Mild Hybrid Electric Drive Train . . . . . . . . . . . . . . . 355
11.2.1 Configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 355
11.2.2 Operating Modes and Control Strategy . . . . . . . . . . . 355
11.2.3 Drive Train Design . . . . . . . . . . . . . . . . . . . . . . . . . . 356
11.2.4 Performance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 360
11.3 Series–Parallel Mild Hybrid Electric Drive Train . . . . . . . . . . 365
“53981_C000.tex” — page xi[#11] 14/8/2009 11:49
Contents xi
11.3.1 Configuration of the Drive Train
with a Planetary Gear Unit . . . . . . . . . . . . . . . . . . . . 365
11.3.2 Operating Modes and Control . . . . . . . . . . . . . . . . . . 367
11.3.2.1 Speed-Coupling Operating Mode . . . . . . . . 367
11.3.2.2 Torque-Coupling Operating Mode . . . . . . . . 368
11.3.2.3 Engine-Alone Traction Mode . . . . . . . . . . . . 369
11.3.2.4 Motor-Alone Traction Mode . . . . . . . . . . . . 369
11.3.2.5 Regenerative Braking Mode . . . . . . . . . . . . . 370
11.3.2.6 Engine Starting . . . . . . . . . . . . . . . . . . . . . . 370
11.3.3 Control Strategy . . . . . . . . . . . . . . . . . . . . . . . . . . . . 370
11.3.4 Drive Train with a Floating-Stator Motor . . . . . . . . . . 371
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 372
12 Peaking Power Sources and Energy Storages . . . . . . . . . . . . . . . . 375
12.1 Electrochemical Batteries . . . . . . . . . . . . . . . . . . . . . . . . . . . 375
12.1.1 Electrochemical Reactions . . . . . . . . . . . . . . . . . . . . . 378
12.1.2 Thermodynamic Voltage . . . . . . . . . . . . . . . . . . . . . . 379
12.1.3 Specific Energy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 380
12.1.4 Specific Power. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 382
12.1.5 Energy Efficiency . . . . . . . . . . . . . . . . . . . . . . . . . . . 384
12.1.6 Battery Technologies . . . . . . . . . . . . . . . . . . . . . . . . . 385
12.1.6.1 Lead–Acid Battery . . . . . . . . . . . . . . . . . . . . 385
12.1.6.2 Nickel-Based Batteries . . . . . . . . . . . . . . . . . 386
12.1.6.3 Lithium-Based Batteries . . . . . . . . . . . . . . . . 388
12.2 Ultracapacitors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 390
12.2.1 Features of Ultracapacitors . . . . . . . . . . . . . . . . . . . . 390
12.2.2 Basic Principles of Ultracapacitors . . . . . . . . . . . . . . . 391
12.2.3 Performance of Ultracapacitors . . . . . . . . . . . . . . . . . 392
12.2.4 Ultracapacitor Technologies . . . . . . . . . . . . . . . . . . . . 396
12.3 Ultra-High-Speed Flywheels . . . . . . . . . . . . . . . . . . . . . . . . 397
12.3.1 Operation Principles of Flywheels . . . . . . . . . . . . . . . 397
12.3.2 Power Capacity of Flywheel Systems . . . . . . . . . . . . . 400
12.3.3 Flywheel Technologies . . . . . . . . . . . . . . . . . . . . . . . 402
12.4 Hybridization of Energy Storages . . . . . . . . . . . . . . . . . . . . . 404
12.4.1 Concept of Hybrid Energy Storage . . . . . . . . . . . . . . 404
12.4.2 Passive and Active Hybrid Energy Storage with
Battery and Ultracapacitor. . . . . . . . . . . . . . . . . . . . . 404
12.4.3 Battery and Ultracapacitor Size Design . . . . . . . . . . . 406
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 410
13 Fundamentals of Regenerative Breaking . . . . . . . . . . . . . . . . . . . 411
13.1 Braking Energy Consumed in Urban Driving . . . . . . . . . . . . 411
13.2 Braking Energy versus Vehicle Speed . . . . . . . . . . . . . . . . . . 413
13.3 Braking Energy versus Braking Power . . . . . . . . . . . . . . . . . 416
13.4 Braking Power versus Vehicle Speed . . . . . . . . . . . . . . . . . . . 416
“53981_C000.tex” — page xii[#12] 14/8/2009 11:49
xii Contents
13.5 Braking Energy versus Vehicle Deceleration Rate . . . . . . . . . 417
13.6 Braking Energy on Front and Rear Axles . . . . . . . . . . . . . . . . 419
13.7 Brake System of EV, HEV, and FCV . . . . . . . . . . . . . . . . . . . . 420
13.7.1 Parallel Hybrid Braking System . . . . . . . . . . . . . . . . . 420
13.7.1.1 Design and Control Principles with Fixed
Ratios between Electric and Mechanical
Braking Forces . . . . . . . . . . . . . . . . . . . . . . . 420
13.7.1.2 Design and Control Principles for Maximum
Regenerative Braking . . . . . . . . . . . . . . . . . 422
13.7.2 Fully Controllable Hybrid Brake System . . . . . . . . . . 426
13.7.2.1 Control Strategy for Optimal Braking
Performance . . . . . . . . . . . . . . . . . . . . . . . . 427
13.7.2.2 Control Strategy for Optimal Energy
Recovery . . . . . . . . . . . . . . . . . . . . . . . . . . . 429
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 431
14 Fuel Cells . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 433
14.1 Operating Principles of Fuel Cells . . . . . . . . . . . . . . . . . . . . . 433
14.2 Electrode Potential and Current–Voltage Curve . . . . . . . . . . 437
14.3 Fuel and Oxidant Consumption . . . . . . . . . . . . . . . . . . . . . . 440
14.4 Fuel Cell System Characteristics . . . . . . . . . . . . . . . . . . . . . . 441
14.5 Fuel Cell Technologies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 443
14.5.1 Proton Exchange Membrane Fuel Cells . . . . . . . . . . . 443
14.5.2 Alkaline Fuel Cells . . . . . . . . . . . . . . . . . . . . . . . . . . 444
14.5.3 Phosphoric Acid Fuel Cells . . . . . . . . . . . . . . . . . . . . 446
14.5.4 Molten Carbonate Fuel Cells . . . . . . . . . . . . . . . . . . . 447
14.5.5 Solid Oxide Fuel Cells . . . . . . . . . . . . . . . . . . . . . . . . 448
14.5.6 Direct Methanol Fuel Cells . . . . . . . . . . . . . . . . . . . . 449
14.6 Fuel Supply . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 450
14.6.1 Hydrogen Storage . . . . . . . . . . . . . . . . . . . . . . . . . . . 450
14.6.1.1 Compressed Hydrogen . . . . . . . . . . . . . . . . 450
14.6.1.2 Cryogenic Liquid Hydrogen . . . . . . . . . . . . 452
14.6.1.3 Metal Hydrides . . . . . . . . . . . . . . . . . . . . . . 453
14.6.2 Hydrogen Production . . . . . . . . . . . . . . . . . . . . . . . . 454
14.6.2.1 Steam Reforming . . . . . . . . . . . . . . . . . . . . . 454
14.6.2.2 POX Reforming . . . . . . . . . . . . . . . . . . . . . . 455
14.6.2.3 Autothermal Reforming . . . . . . . . . . . . . . . . 456
14.6.3 Ammonia as Hydrogen Carrier . . . . . . . . . . . . . . . . . 457
14.7 Non-Hydrogen Fuel Cells . . . . . . . . . . . . . . . . . . . . . . . . . . 457
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 458
15 Fuel Cell Hybrid Electric Drive Train Design . . . . . . . . . . . . . . . 459
15.1 Configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 459
15.2 Control Strategy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 461
15.3 Parametric Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 463
“53981_C000.tex” — page xiii[#13] 14/8/2009 11:49
Contents xiii
15.3.1 Motor Power Design . . . . . . . . . . . . . . . . . . . . . . . . . 463
15.3.2 Power Design of the Fuel Cell System . . . . . . . . . . . . 464
15.3.3 Design of the Power and Energy Capacity
of the PPS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 465
15.3.3.1 Power Capacity of the PPS . . . . . . . . . . . . . . 465
15.3.3.2 Energy Capacity of the PPS . . . . . . . . . . . . . 465
15.4 Design Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 466
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 469
16 Design of Series Hybrid Drive Train for Off-Road Vehicles . . . . 471
16.1 Motion Resistance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 471
16.1.1 Motion Resistance Caused by Terrain Compaction . . . 472
16.1.2 Motion Resistance Caused by Terrain Bulldozing . . . . 475
16.1.3 Internal Resistance of the Running Gear . . . . . . . . . . 476
16.1.4 Tractive Effort of a Terrain . . . . . . . . . . . . . . . . . . . . . 476
16.1.5 Drawbar Pull . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 477
16.2 Tracked Series Hybrid Vehicle Drive Train Architecture . . . . . 478
16.3 Parametric Design of the Drive Train . . . . . . . . . . . . . . . . . . 479
16.3.1 Traction Motor Power Design . . . . . . . . . . . . . . . . . . 480
16.3.1.1 Vehicle Thrust versus Speed . . . . . . . . . . . . 480
16.3.1.2 Motor Power and Acceleration
Performance . . . . . . . . . . . . . . . . . . . . . . . . 481
16.3.1.3 Motor Power and Gradeability . . . . . . . . . . 482
16.3.1.4 Steering Maneuver of a Tracked Vehicle . . . . 485
16.4 Engine/Generator Power Design . . . . . . . . . . . . . . . . . . . . . 489
16.5 Power and Energy Design of Energy Storage . . . . . . . . . . . . 490
16.5.1 Peaking Power for Traction . . . . . . . . . . . . . . . . . . . . 491
16.5.2 Peaking Power for Nontraction . . . . . . . . . . . . . . . . . 491
16.5.3 Energy Design of Batteries/Ultracapacitors . . . . . . . . 494
16.5.4 Combination of Batteries and Ultracapacitors . . . . . . 494
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 496
Appendix Technical Overview of Toyota Prius . . . . . . . . . . . . . . . . 499
A.1 Vehicle Performance . . . . . . . . . . . . . . . . . . . . . . . . . 499
A.2 Overview of Prius Hybrid Power Train
and Control Systems . . . . . . . . . . . . . . . . . . . . . . . . . 499
A.3 Major Components . . . . . . . . . . . . . . . . . . . . . . . . . . 501
A.3.1 Engine . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 501
A.3.2 Hybrid Transaxle . . . . . . . . . . . . . . . . . . . . . 501
A.3.3 HV Battery . . . . . . . . . . . . . . . . . . . . . . . . . . 502
A.3.4 Inverter Assembly . . . . . . . . . . . . . . . . . . . . . 506
A.3.4.1 Booster Converter (2004 and Later) . . 506
A.3.4.2 Inverter . . . . . . . . . . . . . . . . . . . . . . 506
A.3.4.3 DC–DC Converter . . . . . . . . . . . . . . 507
A.3.4.4 AC Inverter . . . . . . . . . . . . . . . . . . . 507
“53981_C000.tex” — page xiv[#14] 14/8/2009 11:49
xiv Contents
A.3.5 Brake System . . . . . . . . . . . . . . . . . . . . . . . . 507
A.3.5.1 Regenerative Brake Cooperative
Control . . . . . . . . . . . . . . . . . . . . . . . 509
A.3.5.2 Electronic Brake Distribution Control
(2004 and Later Models) . . . . . . . . . . 509
A.3.5.3 Brake Assist System (2004 and Later
Models) . . . . . . . . . . . . . . . . . . . . . . 510
A.3.6 Electric Power Steering . . . . . . . . . . . . . . . . . 510
A.3.7 Enhanced Vehicle Stability Control (VSC)
System (2004 and Later Prius) . . . . . . . . . . . . 512
A.4 Hybrid System Control Modes . . . . . . . . . . . . . . . . . 512
Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 519