Thư viện tri thức trực tuyến
Kho tài liệu với 50,000+ tài liệu học thuật
© 2023 Siêu thị PDF - Kho tài liệu học thuật hàng đầu Việt Nam

Micro and Nano Fabrication: Tools and Processes
Nội dung xem thử
Mô tả chi tiết
Micro and Nano
Fabrication
Hans H. Gatzen · Volker Saile · Jürg Leuthold
Tools and Processes
Micro and Nano Fabrication
Hans H. Gatzen • Volker Saile
Jürg Leuthold
Micro and Nano Fabrication
Tools and Processes
With a Foreward and an Introduction by Richard S. Muller
123
Hans H. Gatzen
Center for Production Technology, Institute
for Micro Production Technology
Leibniz Universität Hannover
Garbsen
Germany
Volker Saile
KIT Division 5, Physics and Mathematics
Karlsruhe Institute of Technology
Eggenstein-Leopoldshafen
Germany
Jürg Leuthold
Institute of Electromagnetic Fields
ETH Zurich
Zurich
Switzerland
ISBN 978-3-662-44394-1 ISBN 978-3-662-44395-8 (eBook)
DOI 10.1007/978-3-662-44395-8
Library of Congress Control Number: 2014948737
Springer Heidelberg New York Dordrecht London
© Springer-Verlag Berlin Heidelberg 2015
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of
the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations,
recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission or
information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar
methodology now known or hereafter developed. Exempted from this legal reservation are brief
excerpts in connection with reviews or scholarly analysis or material supplied specifically for the
purpose of being entered and executed on a computer system, for exclusive use by the purchaser of the
work. Duplication of this publication or parts thereof is permitted only under the provisions of
the Copyright Law of the Publisher’s location, in its current version, and permission for use must
always be obtained from Springer. Permissions for use may be obtained through RightsLink at the
Copyright Clearance Center. Violations are liable to prosecution under the respective Copyright Law.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this
publication does not imply, even in the absence of a specific statement, that such names are exempt
from the relevant protective laws and regulations and therefore free for general use.
While the advice and information in this book are believed to be true and accurate at the date of
publication, neither the authors nor the editors nor the publisher can accept any legal responsibility for
any errors or omissions that may be made. The publisher makes no warranty, express or implied, with
respect to the material contained herein.
Printed on acid-free paper
Springer is part of Springer Science+Business Media (www.springer.com)
Foreward
After nearly half a century during which progress in building microsystems was
overwhelmingly focused on advances in the production of electronic elements—
mainly advances in integrated circuits, a new era has emerged. In this era, microsystems embrace new challenges that handle a diversity of signals, typically many
of which are nonelectrical. These systems, broadly identified as microelectromechanical systems (MEMS) or nanoelectromechanical systems (NEMS), have a wide
range of applications in fields such as industrial controls, transportation, information processing, biomedical devices, as well as many others. Especially noteworthy
is the development of MEMS/NEMS for applications in the new major product area
comprised of sophisticated mobile systems that are capable of being Wi-Fi-linked to
“cloud-based” communication and computing systems. This area is already a heavy
consumer of MEMS for accelerometers, gyros, and ground-position sensing.
Forthcoming are MEMS for health-monitoring and therapy, and for many more
applications. Invention and development in this area will occupy MEMS creators
for decades. It is, indeed, an exciting, highly fruitful time to begin work in this field!
By the end of 2012, the value of MEMS production on the world scale totaled
approximately 12 billion dollars (US) and growth of production was 11 %. These
numbers exhibit clearly that there is great opportunity for skilled performers in
MEMS design. It will be necessary to master designs that call for new materials and
processes. As history has shown, the chances of success in these endeavors are
strongly advanced by study of relevant established technology. This philosophy has
guided the authors in their choices and emphasis of topics in this book.
The authors have made use of their many years of working on MEMS and
NEMS to make clear where we are and how we got there. They have chosen topics
that will inspire and inform you, the reader, about the plentiful challenges and
opportunities in this field.
v
Having begun research and teaching in integrated circuits in the early 1960s,
followed with early work in what is now called MEMS at the end of the 1960s, I
have a strong bond with the field and with many of its major contributors. My wish
for you, the reader, mirrors the wish that has guided the authors: may this book help
you to find enthusiasm, fulfillment, and success in MEMS.
Berkeley, California, Fall 2013 Richard S. Muller
vi Foreward
Preface
Microelectromechanical systems (MEMS) and nanoelectromechanical systems
(NEMS) are miniaturized devices, quite often with a transducer function, and with
the smallest structural dimensions of 100 µm or 100 nm, respectively. Due to the
small dimensions, the production technology applied is rather different from that of
macroscopic systems. Processes often are more similar to those used in the semiconductor industry, without, however, reaching even closely this industry’s process
standardization.
This book is intended for the university student, technician, engineer, manager,
or scientist who would like to expose herself or himself to the field of MEMS and
NEMS fabrication. While the main emphasis is on technology, the book also
provides theoretical background on selected subjects, allowing a better understanding of physical and chemical technological basics.
As an introduction, Chap. 1 presents a brief look into the history of MEMS
(contributed by Richard S. Muller, UC Berkeley). Chapter 2 examines the nature of
Vacuum Technology. Chapters 3 and 4 discuss Deposition and Etching Technologies, respectively, two of the key technologies of micro and nano fabrication.
Chapter 5 covers Doping and Surface Modification technologies. Chapter 6 confers
on the third key technology: pattern transfer by Lithography. Chapter 7 presents a
unique technology for fabricating high aspect ratio microparts closely related to
lithography: LIGA. Chapter 8 discusses Nanofabrication by Self-assembly. Chapters
9 and 10 present Enabling Technologies: Wafer Planarization and Bonding as well
as Contamination Control by cleaning and production in a cleanroom. Chapter 11
concludes the book with a MEMS fabrication sample.
vii
Acknowledgments
Writing a technological book like this one draws on a multitude of resources. My
coauthors and I would like to acknowledge valuable contributions. A very
important part was access to the literature, which was expertly provided by the
German National Library of Science and Technology—University Library Hannover both for digital and (often quite rare) “paper” literature.
We are particularly grateful that a person so influential to the development of
microelectromechanical systems (MEMS) as Prof. Richard S. Muller, co-founder
of the Berkeley Sensor and Actuator Center (BSAC) at UC Berkeley, followed our
request to write a Foreward for this book and also to provide us with his view of the
historic perspectives of MEMS. We considered his latter contribution so valuable
that we chose to use it as our Introduction (Chap. 1). We further would like to thank
numerous persons in the industry and in research facilities for sharing with us
insight into micro and nano fabrication processes and the operation of respective
equipment and in particular: Niclas Mika and Rutger Voets, ASML, Veldhoven,
The Netherlands; Michael Sättler, Frank Schäfer, Jan Peter Stadler, and Heiko
Stahl, Robert Bosch GmbH, Reutlingen, Germany; Eric Pabo, EVG, Ft. Collins,
Colorado; David Fowler, Marvell Nanofabrication Laboratory, UC Berkeley,
Berkeley, California; Dennis Hollars, MiaSolé, Santa Clara, California (now
retired); Gabi Grützner, Jan Jasper Klein, Arne Schleunitz, Christine Schuster, Karl
Pfeiffer, Marko Vogler, and Anja Voigt, micro resist technology, Berlin, Germany;
Joachim Schulz, Microworks, Eggenstein-Leopoldshafen, Germany; Susie Williams, Oxford Instruments Plasma Technology, Bristol, UK; Karin Braun, Süss
MicroTec, Garching, Germany; and Johannes Hartung, von Ardenne, Dresden,
Germany.
At the IMT, Karlsruhe Institute of Technology, we are indepted to Dieter Maas
and Uwe Köhler, for providing us with detailed insight into tools and processes in
their cleanroom, Dieter Maas and Markus Breig for taking photographs, Timo
Heneka for preparing test specimens, Paul Abaffi for taking SEM micrographs, and
Peter J. Jakobs for providing insight into e-beam resists. We would like to express
thanks to Johann Schuardt for expertly drawing most of the pictures in the book, as
ix
well as Angelika Olbrich from the IPQ at the Karlsruhe Institute of Technology and
Claudia Hössbacher from the IFH, ETH Zurich for creating the rest.
Likewise, at the Leibniz Universität Hannover we would like to show appreciation to Jürgen Becker and Veronika Gladilova at the IMPT for sharing equipment
and process information, Marc Christopher Wurz and Tom Creutzburg for providing pictures of the IMPT cleanroom, and in particular to Jasmin Scheerle for
demonstrating the use of cleanroom garment. We further would like to thank Fritz
Schulze Wischeler at the LNQE for equipment information at this facility.
We additionally would like to show gratitude to H. Jörg Osten, MBE, and
Jürgen Caro, PCI, both Leibniz Universität Hannover, for sharing their respective
course materials on semiconductor technology and self-organization of materials.
Furthermore, to Jürgen Caro we are particularly indebted for patiently and
instantaneously answering numerous chemical questions, suggesting chemical etch
processes, and subjecting Chap. 8 on Nanofabrication by Self-assembly to a critical
review. We would like to thank Youry Fedoryshyn, IFH, ETH Zurich, for a review
of Chap. 2 and Christine Ruffert, IMPT Hannover for reviewing the whole manuscript, providing detailed process information on the fab sample presented in
Chap. 11 as well as helping with choosing exercise questions. Lastly, we are
indebted to the team of Petra Jantzen, Mayra Castro, and Judith Hinterberg at
Springer for guiding this project to completion.
As the lead author, it is my privilege to extend special thanks to the IMT at the
Karlsruhe Institute of Technology for providing me with an office in Karlsruhe for
the duration of the project, allowing me to work on the book both in Hanover and
Karlsruhe. Furthermore, I am particularly indebted to my wife Carmen C. Gatzen,
who carefully proofread the whole manuscript repeatedly. Nevertheless, I am
responsible for residual errors. I also would like to express my gratitude to her for
providing administrative support and, last but not least, for offering an occasional
word of encouragement. Also, I acknowledge professional computer support from
Dieter Gutjahr and Oliver Klein, IMT Karlsruhe and Piriya Taptimthong, IMPT
Hannover, as well as software support from my son Matthias M. Gatzen, Baker
Hughes, Celle Technology Center.
Hanover, Germany, Spring 2014 Hans H. Gatzen
x Acknowledgments
Contents
1 Introduction—MEMS, a Historical Perspective .............. 1
References. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
2 Vacuum Technology .................................. 7
2.1 Introduction into Vacuum Technology. . . . . . . . . . . . . . . . . . 7
2.1.1 Importance of Vacuum Technology for Processing
and Characterization . . . . . . . . . . . . . . . . . . . . . . . . 7
2.1.2 Historical Overview . . . . . . . . . . . . . . . . . . . . . . . . 8
2.1.3 Vacuum Technology Basics . . . . . . . . . . . . . . . . . . . 11
2.2 Gas Properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.2.1 Kinetic Gas Behavior . . . . . . . . . . . . . . . . . . . . . . . 14
2.2.2 Ideal and Real Gas . . . . . . . . . . . . . . . . . . . . . . . . . 21
2.3 Gas Flow. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
2.3.1 Flow Regimes . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
2.3.2 Viscous Flow . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
2.3.3 Molecular Flow and Transition Regime . . . . . . . . . . . 23
2.4 Vacuum Systems—Overview . . . . . . . . . . . . . . . . . . . . . . . . 24
2.4.1 Vacuum Chamber . . . . . . . . . . . . . . . . . . . . . . . . . . 24
2.4.2 Pumps . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
2.5 Roughing Pumps . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
2.5.1 Rotary Vane Pump . . . . . . . . . . . . . . . . . . . . . . . . . 27
2.5.2 Rotary Piston Pump . . . . . . . . . . . . . . . . . . . . . . . . 28
2.5.3 Roots Pump . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
2.5.4 Diaphragm Pump . . . . . . . . . . . . . . . . . . . . . . . . . . 30
2.6 High Vacuum Pumps I—Kinetic Transfer Pumps . . . . . . . . . . 31
2.6.1 Diffusion Pump . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
2.6.2 Turbomolecular Pump . . . . . . . . . . . . . . . . . . . . . . . 33
2.6.3 Turbomolecular Drag Pump . . . . . . . . . . . . . . . . . . . 35
2.7 High Vacuum Pumps II—Entrapment Pumps . . . . . . . . . . . . . 36
2.7.1 Cryogenic Pumps I—Cryopump . . . . . . . . . . . . . . . . 36
2.7.2 Cryogenic Pumps II—Meissner Trap. . . . . . . . . . . . . 39
xi
2.7.3 Getter and Sputter Ion Pumps. . . . . . . . . . . . . . . . . . 40
2.8 Vacuum Seals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
2.8.1 Elastomer Seals . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
2.8.2 Metal Seals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
2.9 Vacuum Measurement and Analysis . . . . . . . . . . . . . . . . . . . 43
2.9.1 Introduction into Pressure Measurement. . . . . . . . . . . 43
2.9.2 Direct-Reading Pressure Gauges . . . . . . . . . . . . . . . . 44
2.9.3 Indirect-Reading Gauges—Thermal Conductivity
Gauges . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
2.9.4 Indirect-Reading Gauges—Ionization Gauges . . . . . . . 48
2.9.5 Flow Meter and Mass Flow Controller . . . . . . . . . . . 49
2.9.6 Residual Gas Analysis (RGA) . . . . . . . . . . . . . . . . . 50
2.10 Desorption and Leaks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
2.10.1 Gas Release from Solids . . . . . . . . . . . . . . . . . . . . . 53
2.10.2 Leaks and Leak Detection . . . . . . . . . . . . . . . . . . . . 56
2.11 Vacuum Pump Applications . . . . . . . . . . . . . . . . . . . . . . . . . 57
2.11.1 Selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
2.11.2 Examples of Vacuum Systems Used in Research . . . . 58
References. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
3 Deposition Technologies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
3.1 Introduction and Historic Background . . . . . . . . . . . . . . . . . . 65
3.1.1 The Origins of Thin-Film Technology . . . . . . . . . . . . 65
3.1.2 Introduction into Deposition . . . . . . . . . . . . . . . . . . . 66
3.2 Thermal Physical Vapor Deposition (Thermal PVD) . . . . . . . . 67
3.2.1 Introduction into Thermal PVD
and Historic Overview. . . . . . . . . . . . . . . . . . . . . . . 67
3.2.2 Evaporation Process Theory . . . . . . . . . . . . . . . . . . . 68
3.2.3 Evaporation Hardware and Process . . . . . . . . . . . . . . 81
3.2.4 Molecular Beam Epitaxy (MBE). . . . . . . . . . . . . . . . 88
3.2.5 Pulsed Laser Deposition (PLD). . . . . . . . . . . . . . . . . 93
3.3 Plasma and Arc Physical Vapor Deposition
(Plasma/Arc PVD) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94
3.3.1 Introduction and History . . . . . . . . . . . . . . . . . . . . . 94
3.3.2 Plasma Physics. . . . . . . . . . . . . . . . . . . . . . . . . . . . 96
3.3.3 Physics of Sputtering. . . . . . . . . . . . . . . . . . . . . . . . 106
3.3.4 Sputtering Hardware and Process . . . . . . . . . . . . . . . 116
3.3.5 Ion Beam Deposition (IBD) . . . . . . . . . . . . . . . . . . . 120
3.3.6 Cathodic Arc Plasma and Filtered Cathodic
Arc Deposition . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122
3.4 Hybrid PVD Processes . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124
3.4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124
3.4.2 Ion Beam Assisted Evaporation . . . . . . . . . . . . . . . . 124
xii Contents
3.5 Chemical Vapor Deposition (CVD)-Like Processes . . . . . . . . . 125
3.5.1 Introduction into CVD-Like Processes
and Historic Overview. . . . . . . . . . . . . . . . . . . . . . . 125
3.5.2 Reaction Types. . . . . . . . . . . . . . . . . . . . . . . . . . . . 127
3.5.3 Thermodynamics of CVD . . . . . . . . . . . . . . . . . . . . 130
3.5.4 Gas Transport. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136
3.5.5 Film Growth Kinetics . . . . . . . . . . . . . . . . . . . . . . . 140
3.5.6 Thermal CVD—Reactors and Processes. . . . . . . . . . . 147
3.5.7 Plasma-Enhanced Chemical Vapor Deposition
(PECVD)—Reactors and Processes . . . . . . . . . . . . . . 150
3.5.8 Laser-Induced Chemical Vapor
Deposition (LCVD). . . . . . . . . . . . . . . . . . . . . . . . . 154
3.5.9 CVD Gas Safety and Analysis . . . . . . . . . . . . . . . . . 155
3.5.10 Atomic Layer Deposition (ALD). . . . . . . . . . . . . . . . 156
3.6 Physical-Chemical Hybrid Processes . . . . . . . . . . . . . . . . . . . 164
3.6.1 Activated Reactive Evaporation (ARE) . . . . . . . . . . . 164
3.6.2 Reactive Sputtering . . . . . . . . . . . . . . . . . . . . . . . . . 165
3.7 Liquid-Phase Deposition by Spin-Coating, Spray-Coating,
and Dip-Coating . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 169
3.7.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 169
3.7.2 Spin-Coating . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 170
3.7.3 Spray-Coating . . . . . . . . . . . . . . . . . . . . . . . . . . . . 173
3.7.4 Dip-Coating . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 173
3.8 Solgel Technology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 174
3.8.1 Solgel Process Basics . . . . . . . . . . . . . . . . . . . . . . . 174
3.8.2 Solgel Process Example. . . . . . . . . . . . . . . . . . . . . . 175
3.9 Electrochemical and Chemical Reaction Deposition. . . . . . . . . 176
3.9.1 Electrochemical Deposition . . . . . . . . . . . . . . . . . . . 176
3.9.2 Chemical Deposition: Electroless Plating . . . . . . . . . . 189
3.9.3 Electrophoretic Deposition (EPD) . . . . . . . . . . . . . . . 190
References. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 196
4 Etching Technologies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 205
4.1 Etching Technologies Basics . . . . . . . . . . . . . . . . . . . . . . . . 205
4.1.1 Introduction into Etching . . . . . . . . . . . . . . . . . . . . . 205
4.1.2 History of Etching . . . . . . . . . . . . . . . . . . . . . . . . . 207
4.2 Wet-Chemical Etching. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 208
4.2.1 Wet-Chemical Etching Processes . . . . . . . . . . . . . . . 208
4.2.2 Wet-Chemical Etching of Single Crystal Silicon . . . . . 211
4.2.3 Etching of Insulators and Dielectrics . . . . . . . . . . . . . 231
4.2.4 Etching of Conductors. . . . . . . . . . . . . . . . . . . . . . . 232
4.3 Dry Etching . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 234
4.3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 234
4.3.2 Physical Etching . . . . . . . . . . . . . . . . . . . . . . . . . . . 235
Contents xiii
4.3.3 Chemical Dry Etch . . . . . . . . . . . . . . . . . . . . . . . . . 249
4.3.4 Physical–Chemical Processes . . . . . . . . . . . . . . . . . . 255
4.4 Mechanical and Mechanical–Chemical Etching. . . . . . . . . . . . 264
4.4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 264
4.4.2 Powder Blasting . . . . . . . . . . . . . . . . . . . . . . . . . . . 264
4.4.3 Gas Cluster Ion Beam (GCIB) Technology . . . . . . . . 265
References. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 268
5 Doping and Surface Modification . . . . . . . . . . . . . . . . . . . . . . . . 273
5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 273
5.1.1 The Importance of Doping and Surface
Modification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 273
5.1.2 History of Doping and Surface Modification . . . . . . . 273
5.2 Introduction into Doping . . . . . . . . . . . . . . . . . . . . . . . . . . . 275
5.2.1 Electrical Conductivity in Solids . . . . . . . . . . . . . . . . 275
5.2.2 Semiconductor Properties and Doping of Silicon. . . . . 276
5.3 Doping by Diffusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 278
5.3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 278
5.3.2 Dopant Diffusion . . . . . . . . . . . . . . . . . . . . . . . . . . 278
5.3.3 Theoretical Description of Diffusion . . . . . . . . . . . . . 279
5.3.4 Atomistic Model of Diffusion. . . . . . . . . . . . . . . . . . 282
5.3.5 Diffusion Furnace and Process . . . . . . . . . . . . . . . . . 284
5.4 Doping by Implantation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 288
5.4.1 Introduction into Implantation. . . . . . . . . . . . . . . . . . 288
5.4.2 Implantation Science . . . . . . . . . . . . . . . . . . . . . . . . 289
5.4.3 Ion Implanter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 295
5.4.4 Rapid Thermal Processing (RTP) . . . . . . . . . . . . . . . 299
5.5 Doping Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 300
5.5.1 MEMS Applications . . . . . . . . . . . . . . . . . . . . . . . . 300
5.5.2 Wafer Technology Applications . . . . . . . . . . . . . . . . 301
5.6 Thermal Oxidation of Silicon . . . . . . . . . . . . . . . . . . . . . . . . 302
5.6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 302
5.6.2 General Properties of SiO2 . . . . . . . . . . . . . . . . . . . . 303
5.6.3 Oxidation Mechanisms . . . . . . . . . . . . . . . . . . . . . . 303
5.6.4 Oxidation Equipment and Process . . . . . . . . . . . . . . . 307
5.6.5 Applications of Thermal SiO2. . . . . . . . . . . . . . . . . . 309
References. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 310
6 Lithography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 313
6.1 Overview and Historic Development . . . . . . . . . . . . . . . . . . . 313
6.1.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 313
6.1.2 Historic Development . . . . . . . . . . . . . . . . . . . . . . . 315
6.2 Mask-Based Lithography I—Optical Lithography . . . . . . . . . . 317
6.2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 317
xiv Contents
6.2.2 Optical Lithography Process Sequence. . . . . . . . . . . . 318
6.2.3 Optical Basics of Lithography I—Exposure
Alternatives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 326
6.2.4 Optical Basics of Lithography II—Physical
Limitations of Optics. . . . . . . . . . . . . . . . . . . . . . . . 329
6.2.5 Selected Photolithography Tools and Processes. . . . . . 346
6.2.6 Advanced Semiconductor Lithography Processes . . . . 355
6.3 Mask-Based Lithography II: X-Ray Lithography
(XRL) Systems. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 364
6.3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 364
6.3.2 XRL Principle . . . . . . . . . . . . . . . . . . . . . . . . . . . . 364
6.3.3 XRL Mask Fabrication . . . . . . . . . . . . . . . . . . . . . . 366
6.4 Direct Write Lithography . . . . . . . . . . . . . . . . . . . . . . . . . . . 367
6.4.1 Laser Lithography. . . . . . . . . . . . . . . . . . . . . . . . . . 367
6.4.2 E-Beam Lithography . . . . . . . . . . . . . . . . . . . . . . . . 371
6.5 Scanning Probe-Based Lithography . . . . . . . . . . . . . . . . . . . . 374
6.5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 374
6.5.2 AFM-Based Nanoscratch Lithography . . . . . . . . . . . . 374
6.5.3 Dip-Pen Nanolithography (DPN) . . . . . . . . . . . . . . . 375
6.6 Nanofabrication by Replication and Pattern Transfer . . . . . . . . 376
6.6.1 Nanoimprint Lithography (NIL) . . . . . . . . . . . . . . . . 376
6.6.2 Soft Lithography. . . . . . . . . . . . . . . . . . . . . . . . . . . 377
6.7 Photoresist and Ink . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 380
6.7.1 Aggregate State Alternatives . . . . . . . . . . . . . . . . . . 380
6.7.2 UV Resists, Soluble When Cured . . . . . . . . . . . . . . . 381
6.7.3 UV Resists, Non-soluble When Cured: SU-8 . . . . . . . 383
6.7.4 Two-Photon Absorption Resists . . . . . . . . . . . . . . . . 384
6.7.5 X-Ray, E-Beam, and EUV Resists . . . . . . . . . . . . . . 385
6.7.6 Nanoimprint Resists . . . . . . . . . . . . . . . . . . . . . . . . 387
6.7.7 Inks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 388
References. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 389
7 LIGA. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 397
7.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 397
7.2 LIGA Infrastructure. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 398
7.2.1 Challenge . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 398
7.2.2 Synchrotron Radiation Source . . . . . . . . . . . . . . . . . 398
7.2.3 Electrochemical Deposition Capabilities. . . . . . . . . . . 400
7.2.4 Replication Capabilities . . . . . . . . . . . . . . . . . . . . . . 401
7.3 LIGA Fabrication . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 401
7.3.1 Mask Fabrication . . . . . . . . . . . . . . . . . . . . . . . . . . 401
7.3.2 X-Ray Lithography Process . . . . . . . . . . . . . . . . . . . 403
7.3.3 Mold Insert Fabrication by Electrodeposition . . . . . . . 404
Contents xv
7.3.4 Replication. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 405
7.4 Direct LIGA. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 405
7.5 LIGA and Direct LIGA Production Samples . . . . . . . . . . . . . 405
7.5.1 LIGA Production Sample: Microspectrometer. . . . . . . 405
7.5.2 Direct LIGA Product Samples: Escapement Parts . . . . 406
7.6 LIGA and HARMST. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 407
References. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 408
8 Nanofabrication by Self-Assembly . . . . . . . . . . . . . . . . . . . . . . . . 409
8.1 Introduction and Historic Background . . . . . . . . . . . . . . . . . . 409
8.1.1 Top–Down and Bottom–Up Nanofabrication . . . . . . . 409
8.1.2 Historic Background . . . . . . . . . . . . . . . . . . . . . . . . 410
8.2 Self-Assembly Process. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 411
8.2.1 Introduction into Self-Assembly . . . . . . . . . . . . . . . . 411
8.2.2 Chemical, Physical, and Colloidal Self-Assembly . . . . 411
8.2.3 Static and Dynamic Self-Assembly . . . . . . . . . . . . . . 412
8.2.4 Co-Assembly . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 413
8.2.5 Hierarchical Self-Assembly . . . . . . . . . . . . . . . . . . . 413
8.2.6 Directed (or Guided) Self-Assembly—Basics . . . . . . . 414
8.2.7 The Role of Defects in Self-Assembly. . . . . . . . . . . . 414
8.3 Self-Assembled Monolayers (SAMs) . . . . . . . . . . . . . . . . . . . 415
8.4 Directed Self-Assembly—Mechanisms. . . . . . . . . . . . . . . . . . 416
8.4.1 Surface Topography . . . . . . . . . . . . . . . . . . . . . . . . 416
8.4.2 Surface Wetting . . . . . . . . . . . . . . . . . . . . . . . . . . . 417
8.5 Nanosystem Building Blocks—Examples. . . . . . . . . . . . . . . . 418
8.5.1 DNA Scaffolds. . . . . . . . . . . . . . . . . . . . . . . . . . . . 418
8.5.2 Carbon Nanotubes (CNTs) . . . . . . . . . . . . . . . . . . . . 419
8.5.3 Block Copolymers . . . . . . . . . . . . . . . . . . . . . . . . . 420
8.5.4 Porous Alumina . . . . . . . . . . . . . . . . . . . . . . . . . . . 421
References. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 422
9 Enabling Technologies I—Wafer Planarization and Bonding . . . . 425
9.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 425
9.2 Wafer Planarization. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 426
9.2.1 Planarization Challenge . . . . . . . . . . . . . . . . . . . . . . 426
9.2.2 History of CMP in the Semiconductor Industry . . . . . 427
9.2.3 CMP Equipment and Consumables . . . . . . . . . . . . . . 429
9.2.4 CMP Process and Issues . . . . . . . . . . . . . . . . . . . . . 436
9.2.5 CMP Applications . . . . . . . . . . . . . . . . . . . . . . . . . 437
9.3 Wafer Bonding. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 438
9.3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 438
9.3.2 Anodic Bonding . . . . . . . . . . . . . . . . . . . . . . . . . . . 438
9.3.3 Silicon Fusion Bonding . . . . . . . . . . . . . . . . . . . . . . 443
xvi Contents