Thư viện tri thức trực tuyến
Kho tài liệu với 50,000+ tài liệu học thuật
© 2023 Siêu thị PDF - Kho tài liệu học thuật hàng đầu Việt Nam

Mechanical behaviour of engineering materials
Nội dung xem thử
Mô tả chi tiết
Mechanical Behaviour of Engineering Materials
J. Rösler · H. Harders · M. Bäker
Mechanical Behaviour
of Engineering Materials
Metals, Ceramics, Polymers, and Composites
With 320 Figures and 32 Tables
Prof. Dr. Joachim Rösler
TU Braunschweig
Institut für Werkstoffe
Langer Kamp 8
38106 Braunschweig, Germany
Priv.-Doz. Dr. Martin Bäker
TU Braunschweig
Institut für Werkstoffe
Langer Kamp 8
38106 Braunschweig, Germany
Dr.-Ing. Harald Harders
Gartenstraße 28
45468 Mülheim
Germany
German edition published by the Teubner Verlag Wiesbaden, 2006, ISBN 978-3-8351-0008-4
Library of Congress Control Number:
ISBN 978-3-540-73446-8 Springer Berlin Heidelberg New York
This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting,
reproduction on microfilm or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9,
1965, in its current version, and permission for use must always be obtained from Springer. Violations
are liable for prosecution under the German Copyright Law.
Springer is a part of Springer Science+Business Media
springer.com
c Springer-Verlag Berlin Heidelberg 2007
The use of general descriptive names, registered names, trademarks, etc. in this publication does not imply,
even in the absence of a specific statement, that such names are exempt from the relevant protective laws
and regulations and therefore free for general use.
Typesetting: by the authors
Production: Integra Softwares Services Pvt. Ltd., India
Cover design: wmx Design GmbH, Heidelberg
Printed on acid-free paper SPIN: 11560166 42/3100/Integra 543210
2007933503
Prof. Dr. rer. nat. Joachim Rösler, born in 1959, studied materials science at the University Stuttgart, Germany, from 1979 to 1985. After earning a
Ph. D. at the Max-Planck Institute for Metals Research, Stuttgart, Germany,
and a post-doctoral fellowship at the University of California, Santa Barbara,
usa, he worked at Asea Brown Boveri ag, Switzerland, from 1991 to 1996,
being finally responsible for the material laboratory of abb Power Generation Ltd., Switzerland. Since 1996, he has been professor for materials science
and director of the Institute for Materials Science at the Technical University
Braunschweig, Germany. His main research interest lies in high-temperature
materials, the mechanical behaviour of materials, and in materials development.
Dr.-Ing. Harald Harders, born in 1972, studied mechanical engineering,
with a focus one mechanics and materials, at the Technical University Braunschweig, Germany. In 1999, he worked as research scientist at the German
Aerospace Center (dlr). From 1999 to 2004, he worked as research scientist at
the Institute for Materials Science at the Technical University Braunschweig,
finishing with a Ph.D. thesis (2005) on fatigue of metal foams. Since 2004, he has
been working in the field of life time prediction and modelling of superalloys
and coating systems at Siemens Power Generation in Mülheim an der Ruhr,
Germany.
Priv.-Doz. Dr. rer. nat. Martin Bäker, born in 1966, studied physics
at the University Hamburg, Germany, from 1987 to 1993 and finished his
Ph. D. at the II. Institute for Theoretical Physics of the University Hamburg
in 1995, where he also worked as Post-Doc for a year. Since 1996, he has
been working as research scientist at the Institute for Materials Science at
the Technical University Braunschweig, Germany, focusing on continuum mechanics simulation of materials. In 2004, he finished his ‘habilitation’ (lecturer
qualification) in the field of materials science.
By the authors
Preface
Components used in mechanical engineering usually have to bear high mechanical loads. It is, thus, of considerable importance for students of mechanical engineering and materials science to thoroughly study the mechanical
behaviour of materials. There are different approaches to this subject: The engineer is mainly interested in design rules to dimension components, whereas
materials science usually focuses on the physical processes in the material
occurring during mechanical loading. Ultimately, however, both aspects are
important in practice. Without a clear understanding of the mechanisms of
deformation in the material, the engineer might uncritically apply design rules
and thus cause ‘unexpected’ failure of components. On the other hand, all theoretical knowledge is practically useless if the gap to practical application is
not closed.
Our objective in writing this book is to help in solving this problem. For
this reason, the topics covered range from the treatment of the mechanisms
of deformation under mechanical loads to the engineering practice in dimensioning components. To meet the needs of modern engineering, which is more
than ever characterised by the use of all classes of materials, we also needed to
discuss the peculiarities of metals, ceramics, polymers, and composites. This is
reflected in the structure of the book. On the one hand, there are some chapters dealing with the different types of mechanical loading common to several
classes of materials (Chapter 2, elastic behaviour; Chapter 3, plasticity and
failure; Chapter 4, notches; Chapter 5, fracture mechanics; Chapter 10, fatigue; Chapter 11, creep). The specifics of the mechanical behaviour of the
different material classes that are due to their structure and the resulting microstructural processes are treated in separate chapters (Chapter 6, metals;
Chapter 7, ceramics; Chapter 8, polymers; Chapter 9, composites).
In this book, we thus aim to comprehensively cover the mechanical behaviour of materials. It addresses students of mechanical engineering and materials science as well as practising engineers working on the design of components. Although the book contains an in-depth treatment of the mechanical
behaviour and is thus not to be considered as an introduction, all topics can
VIII Preface
be understood without much previous knowledge of material physics and mechanics. To make it more accessible, the book starts with an introductory
chapter on the structure of materials and contains appendices on tensors,
crystal orientation, and thermodynamics.
In many cases, we thought it desirable to cover some topics in greater depth
for those readers with a special interest in the subject matter. These sections
can be skipped without compromising the understanding of other subjects.
These advanced sections are indented, as here, or, in the case of longer
sections, marked with a ∗ on the section number.
At the end of the main part, the reader can find some exercises with complete
solutions. They serve as numerical examples for the topics covered in the text
and enable the reader to check their understanding of the subject.
This book has evolved from lectures at the Technical University of
Braunschweig on the mechanical behaviour of materials, aimed at graduate
students, and was first published in German by the Teubner Verlag, Wiesbaden. Due to its success and many encouraging remarks from readers, it
seemed worthwhile to prepare an English edition of the book. In doing so,
the nomenclature and some of the references were adapted to improve the
usability of the book for English readers.
We wish to thank G¨unter Lange who provided valuable help in preparing this book. Furthermore, we want to thank J¨urgen Huber (CeramTec ag),
Dr. Peter Neumann (Max-Planck-Institut f¨ur Eisenforschung GmbH), Volker
Saß (ThyssenKrupp Nirosta GmbH), Johannes Stoiber (Allianz-Zentrum f¨ur
Technik GmbH), the Lufthansa Technik ag, the Institut f¨ur Werkstofftechnik of the Universit¨at Gh Kassel, the Institut f¨ur F¨uge- und Schweißtechnik
of the Technische Universit¨at Braunschweig, the Institut f¨ur Baustoffe, Massivbau und Brandschutz of the Technische Universit¨at Braunschweig, and all
members of the Institut f¨ur Werkstoffe. Steffen M¨uller has made a significant contribution to the lecture notes that were the starting point for writing
this book. Furthermore, we want to thank Allister James and Gary Merrill
who proofread parts of the manuscript. We are also indebted to many readers who sent book evaluations to the Teubner Verlag that have been helpful
in preparing the second German edition [123]. The Teubner Verlag kindly
gave the permission to publish an English translation. We finally want to
thank the Springer publishing company for the cooperation in preparing this
edition.
Braunschweig, Joachim R¨osler
M¨ulheim an der Ruhr, Harald Harders
May 2007 Martin B¨aker
Contents
1 The structure of materials . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.1 Atomic structure and the chemical bond. . . . . . . . . . . . . . . . . . . . 1
1.2 Metals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.2.1 Metallic bond . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.2.2 Crystal structures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
1.2.3 Polycrystalline metals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
1.3 Ceramics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
1.3.1 Covalent bond . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
1.3.2 Ionic bond . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
1.3.3 Dipole bond . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
1.3.4 Van der Waals bond . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
1.3.5 Hydrogen bond . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
1.3.6 The crystal structure of ceramics . . . . . . . . . . . . . . . . . . . . 21
1.3.7 Amorphous ceramics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
1.4 Polymers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
1.4.1 The chemical structure of polymers . . . . . . . . . . . . . . . . . . 24
1.4.2 The structure of polymers . . . . . . . . . . . . . . . . . . . . . . . . . . 25
2 Elasticity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
2.1 Deformation modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
2.2 Stress and strain . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
2.2.1 Stress . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
2.2.2 Strain . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
2.3 Atomic interactions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
2.4 Hooke’s law . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
2.4.1 Elastic strain energy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
∗ 2.4.2 Elastic deformation under multiaxial loads1
. . . . . . . . . . . 43
∗ 2.4.3 Isotropic material . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
1 Sections with a title marked by a ∗ contain advanced information which can be
skipped without impairing the understanding of subsequent topics.
X Contents
∗ 2.4.4 Cubic lattice . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
∗ 2.4.5 Orthorhombic crystals and orthotropic elasticity. . . . . . . 53
∗ 2.4.6 Transversally isotropic elasticity . . . . . . . . . . . . . . . . . . . . . 54
∗ 2.4.7 Other crystal lattices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
∗ 2.4.8 Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
∗ 2.5 Isotropy and anisotropy of macroscopic components . . . . . . . . . . 57
2.6 Temperature dependence of Young’s modulus . . . . . . . . . . . . . . . 60
3 Plasticity and failure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
3.1 Nominal and true strain . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
3.2 Stress-strain diagrams . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
3.2.1 Types of stress-strain diagrams . . . . . . . . . . . . . . . . . . . . . . 68
3.2.2 Analysis of a stress-strain diagram . . . . . . . . . . . . . . . . . . . 73
3.2.3 Approximation of the stress-strain curve. . . . . . . . . . . . . . 81
3.3 Plasticity theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
3.3.1 Yield criteria . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
3.3.2 Yield criteria of metals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86
3.3.3 Yield criteria of polymers. . . . . . . . . . . . . . . . . . . . . . . . . . . 92
3.3.4 Flow rules . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93
3.3.5 Hardening . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97
∗ 3.3.6 Application of a yield criterion, flow rule, and
hardening rule . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103
∗ 3.4 Hardness . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107
∗ 3.4.1 Scratch tests . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108
∗ 3.4.2 Indentation tests . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108
∗ 3.4.3 Rebound tests . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110
3.5 Material failure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110
3.5.1 Shear fracture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111
3.5.2 Cleavage fracture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114
3.5.3 Fracture criteria . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116
4 Notches . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119
4.1 Stress concentration factor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119
4.2 Neuber’s rule . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122
∗ 4.3 Tensile testing of notched specimens . . . . . . . . . . . . . . . . . . . . . . . 125
5 Fracture mechanics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129
5.1 Introduction to fracture mechanics . . . . . . . . . . . . . . . . . . . . . . . . . 129
5.1.1 Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129
5.2 Linear-elastic fracture mechanics . . . . . . . . . . . . . . . . . . . . . . . . . . 131
5.2.1 The stress field near a crack tip . . . . . . . . . . . . . . . . . . . . . 131
5.2.2 The energy balance of crack propagation . . . . . . . . . . . . . 134
5.2.3 Dimensioning pre-cracked components
under static loads 142
5.2.4 Fracture parameters of different materials . . . . . . . . . . . . 144
5.2.5 Material behaviour during crack propagation. . . . . . . . . . 146
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Contents XI
∗ 5.2.6 Subcritical crack propagation . . . . . . . . . . . . . . . . . . . . . . . 150
∗ 5.2.7 Measuring fracture parameters . . . . . . . . . . . . . . . . . . . . . . 152
∗ 5.3 Elastic-plastic fracture mechanics . . . . . . . . . . . . . . . . . . . . . . . . . . 158
∗ 5.3.1 Crack tip opening displacement (ctod) . . . . . . . . . . . . . . 158
∗ 5.3.2 J integral . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159
∗ 5.3.3 Material behaviour during crack propagation. . . . . . . . . . 161
∗ 5.3.4 Measuring elastic-plastic fracture mechanics parameters 163
6 Mechanical behaviour of metals . . . . . . . . . . . . . . . . . . . . . . . . . . . . 165
6.1 Theoretical strength . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 165
6.2 Dislocations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 166
6.2.1 Types of dislocations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 166
6.2.2 The stress field of a dislocation . . . . . . . . . . . . . . . . . . . . . . 168
6.2.3 Dislocation movement. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 170
6.2.4 Slip systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 173
6.2.5 The critical resolved shear stress . . . . . . . . . . . . . . . . . . . . 178
6.2.6 Taylor factor. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 182
6.2.7 Dislocation interaction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 184
6.2.8 Generation, multiplication and annihilation of
dislocations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 185
6.2.9 Forces acting on dislocations . . . . . . . . . . . . . . . . . . . . . . . . 187
6.3 Overcoming obstacles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 189
6.3.1 Athermal processes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 190
6.3.2 Thermally activated processes . . . . . . . . . . . . . . . . . . . . . . . 193
6.3.3 Ductile-brittle transition . . . . . . . . . . . . . . . . . . . . . . . . . . . 196
6.3.4 Climb . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 196
6.3.5 Intersection of dislocations. . . . . . . . . . . . . . . . . . . . . . . . . . 197
6.4 Strengthening mechanisms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 198
6.4.1 Work hardening . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 198
6.4.2 Grain boundary strengthening . . . . . . . . . . . . . . . . . . . . . . 200
6.4.3 Solid solution hardening . . . . . . . . . . . . . . . . . . . . . . . . . . . . 203
6.4.4 Particle strengthening . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 209
6.4.5 Hardening of steels . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 218
∗ 6.5 Mechanical twinning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 223
7 Mechanical behaviour of ceramics . . . . . . . . . . . . . . . . . . . . . . . . . 227
7.1 Manufacturing ceramics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 228
7.2 Mechanisms of crack propagation . . . . . . . . . . . . . . . . . . . . . . . . . . 229
7.2.1 Crack deflection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 230
7.2.2 Crack bridging . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 230
7.2.3 Microcrack formation and crack branching . . . . . . . . . . . . 231
7.2.4 Stress-induced phase transformations . . . . . . . . . . . . . . . . 232
7.2.5 Stable crack growth . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 234
∗ 7.2.6 Subcritical crack growth in ceramics . . . . . . . . . . . . . . . . . 234
7.3 Statistical fracture mechanics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 236
XII Contents
7.3.1 Weibull statistics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 236
∗ 7.3.2 Weibull statistics for subcritical crack growth . . . . . . . . . 242
∗ 7.3.3 Measuring the parameters σ0 and m . . . . . . . . . . . . . . . . . 243
∗ 7.4 Proof test . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 246
7.5 Strengthening ceramics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 248
7.5.1 Reducing defect size . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 249
7.5.2 Crack deflection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 249
7.5.3 Microcracks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 251
7.5.4 Transformation toughening . . . . . . . . . . . . . . . . . . . . . . . . . 252
7.5.5 Adding ductile particles . . . . . . . . . . . . . . . . . . . . . . . . . . . . 255
8 Mechanical behaviour of polymers . . . . . . . . . . . . . . . . . . . . . . . . . 257
8.1 Physical properties of polymers . . . . . . . . . . . . . . . . . . . . . . . . . . . 257
8.1.1 Relaxation processes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 257
8.1.2 Glass transition temperature . . . . . . . . . . . . . . . . . . . . . . . . 260
8.1.3 Melting temperature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 261
8.2 Time-dependent deformation of polymers . . . . . . . . . . . . . . . . . . . 263
8.2.1 Phenomenological description of time-dependence . . . . . 263
8.2.2 Time-dependence and thermal activation . . . . . . . . . . . . . 266
8.3 Elastic properties of polymers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 269
8.3.1 Elastic properties of thermoplastics . . . . . . . . . . . . . . . . . . 269
8.3.2 Elastic properties of elastomers and duromers . . . . . . . . . 273
8.4 Plastic behaviour . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 274
8.4.1 Amorphous thermoplastics . . . . . . . . . . . . . . . . . . . . . . . . . 275
8.4.2 Semi-crystalline thermoplastics . . . . . . . . . . . . . . . . . . . . . . 281
8.5 Increasing the thermal stability . . . . . . . . . . . . . . . . . . . . . . . . . . . 284
8.5.1 Increasing the glass and the melting temperature . . . . . . 284
8.5.2 Increasing the crystallinity. . . . . . . . . . . . . . . . . . . . . . . . . . 287
8.6 Increasing strength and stiffness . . . . . . . . . . . . . . . . . . . . . . . . . . . 289
8.7 Increasing the ductility . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 290
∗ 8.8 Environmental effects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 292
9 Mechanical behaviour of fibre reinforced composites . . . . . . . 295
9.1 Strengthening methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 296
9.1.1 Classifying by particle geometry . . . . . . . . . . . . . . . . . . . . . 296
9.1.2 Classifying by matrix systems . . . . . . . . . . . . . . . . . . . . . . . 299
9.2 Elasticity of fibre composites . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 300
9.2.1 Loading in parallel to the fibres . . . . . . . . . . . . . . . . . . . . . 301
9.2.2 Loading perpendicular to the fibres . . . . . . . . . . . . . . . . . . 301
∗ 9.2.3 The anisotropy in general . . . . . . . . . . . . . . . . . . . . . . . . . . 302
9.3 Plasticity and fracture of composites . . . . . . . . . . . . . . . . . . . . . . . 303
9.3.1 Tensile loading with continuous fibres . . . . . . . . . . . . . . . . 303
9.3.2 Load transfer between matrix and fibre . . . . . . . . . . . . . . 305
9.3.3 Crack propagation in fibre composites . . . . . . . . . . . . . . . . 308
9.3.4 Statistics of composite failure . . . . . . . . . . . . . . . . . . . . . . . 312
Contents XIII
9.3.5 Failure under compressive loads . . . . . . . . . . . . . . . . . . . . . 313
9.3.6 Matrix-dominated failure and arbitrary loads . . . . . . . . . 315
9.4 Examples of composites . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 315
9.4.1 Polymer matrix composites . . . . . . . . . . . . . . . . . . . . . . . . . 315
9.4.2 Metal matrix composites . . . . . . . . . . . . . . . . . . . . . . . . . . . 321
9.4.3 Ceramic matrix composites . . . . . . . . . . . . . . . . . . . . . . . . . 323
∗ 9.4.4 Biological composites . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 325
10 Fatigue . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 333
10.1 Types of loads . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 333
10.2 Fatigue failure of metals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 337
10.2.1 Crack initiation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 338
10.2.2 Crack propagation (stage II) . . . . . . . . . . . . . . . . . . . . . . . . 342
10.2.3 Final fracture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 344
10.3 Fatigue of ceramics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 345
10.4 Fatigue of polymers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 346
10.4.1 Thermal fatigue . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 346
10.4.2 Mechanical fatigue. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 347
10.5 Fatigue of fibre composites. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 347
10.6 Phenomenological description of the fatigue strength . . . . . . . . . 349
10.6.1 Fatigue crack growth . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 349
10.6.2 Stress-cycle diagrams (S-N diagrams) . . . . . . . . . . . . . . . . 357
10.6.3 The role of mean stress . . . . . . . . . . . . . . . . . . . . . . . . . . . . 366
∗ 10.6.4 Fatigue assessment with variable amplitude loading . . . . 368
∗ 10.6.5 Cyclic stress-strain behaviour . . . . . . . . . . . . . . . . . . . . . . . 369
∗ 10.6.6 Kitagawa diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 373
∗ 10.7 Fatigue of notched specimens . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 375
11 Creep. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 383
11.1 Phenomenology of creep . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 383
11.2 Creep mechanisms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 388
11.2.1 Stages of creep . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 388
11.2.2 Dislocation creep . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 389
11.2.3 Diffusion creep . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 393
11.2.4 Grain boundary sliding. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 396
11.2.5 Deformation mechanism maps . . . . . . . . . . . . . . . . . . . . . . 396
11.3 Creep fracture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 400
11.4 Increasing the creep resistance . . . . . . . . . . . . . . . . . . . . . . . . . . . . 401
12 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 407
1 Packing density of crystals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 407
2 Macromolecules . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 407
3 Interaction between two atoms . . . . . . . . . . . . . . . . . . . . . . . . . . . . 407
4 Bulk modulus . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 408
5 Relation between the elastic constants . . . . . . . . . . . . . . . . . . . . . 408
XIV Contents
6 Candy catapult . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 409
7 True strain . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 410
8 Interest calculation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 410
9 Large deformations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 410
10 Yield criteria . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 410
11 Yield criteria of polymers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 411
12 Design of a notched shaft . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 411
13 Estimating the fracture toughness KIc . . . . . . . . . . . . . . . . . . . . . 412
14 Determination of the fracture toughness KIc . . . . . . . . . . . . . . . . 412
15 Static design of a tube . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 413
16 Theoretical strength . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 414
17 Estimating the dislocation density . . . . . . . . . . . . . . . . . . . . . . . . . 414
18 Thermally activated dislocation generation . . . . . . . . . . . . . . . . . 414
19 Work hardening . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 415
20 Grain boundary strengthening . . . . . . . . . . . . . . . . . . . . . . . . . . . . 415
21 Precipitation hardening . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 415
22 Weibull statistics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 415
23 Design of a fluid tank . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 416
24 Subcritical crack growth of a ceramic component . . . . . . . . . . . 417
25 Mechanical models of viscoelastic polymers . . . . . . . . . . . . . . . . . 417
26 Elastic damping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 418
27 Eyring plot . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 418
28 Elasticity of fibre composites . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 419
29 Properties of a polymer matrix composite . . . . . . . . . . . . . . . . . . 419
30 Estimating the number of cycles to failure . . . . . . . . . . . . . . . . . . 419
31 Miner’s rule . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 420
32 Larson-Miller parameter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 421
33 Creep deformation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 421
34 Relaxation of thermal stresses by creep . . . . . . . . . . . . . . . . . . . . . 421
13 Solutions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 423
A Using tensors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 451
A.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 451
A.2 The order of a tensor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 451
A.3 Tensor notations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 452
A.4 Tensor operations and Einstein summation convention . . . . . . . 453
A.5 Coordinate transformations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 456
A.6 Important constants and tensor operations. . . . . . . . . . . . . . . . . . 457
A.7 Invariants . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 458
A.8 Derivations of tensor fields . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 459
B Miller and Miller-Bravais indices . . . . . . . . . . . . . . . . . . . . . . . . . . 461
B.1 Miller indices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 461
B.2 Miller-Bravais indices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 462
Contents XV
C A crash course in thermodynamics . . . . . . . . . . . . . . . . . . . . . . . . 465
C.1 Thermal activation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 465
C.2 Free energy and free enthalpy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 466
C.3 Phase transformations and phase diagrams . . . . . . . . . . . . . . . . . 468
D The J integral . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 473
D.1 Discontinuities, singularities, and Gauss’ theorem . . . . . . . . . . . . 473
D.2 Energy-momentum tensor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 475
D.3 J integral . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 476
D.4 J integral at a crack tip . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 479
D.5 Plasticity at the crack tip. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 481
D.6 Energy interpretation of the J integral . . . . . . . . . . . . . . . . . . . . . 482
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 485
List of symbols . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 493
Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 499
1
The structure of materials
There is a vast multitude of materials with strongly differing properties. A
copper wire, for instance, can be bent easily into a new shape, whereas a
rubber band will snap back to its initial form after deformation, while the
attempt to bend a glass tube ends with fracture of the tube. The strongly
differing properties are reflected in the application of engineering materials –
you would neither want to build cars of glass nor rubber bridges. The multitude of materials enables the engineer to select the best-suited one for any
particular component. For this, however, it is frequently necessary not only to
know the mechanical properties of the materials, but also to understand the
physical phenomena causing them.
The mechanical properties of materials are determined by their atomic
structure. To understand these properties, some knowledge of the structure of
materials is therefore required. This is the topic covered in this chapter. The
structure of materials is investigated by solid state physics, but to understand
the mechanical properties, it is not necessary to understand the more arcane
aspects of this discipline as they can usually be explained with rather simple
models.
This chapter starts with a short explanation of the basic principles of
atomic structure and the nature of the chemical bond. Afterwards, the three
main groups of materials, metals, ceramics, and polymers, are discussed. The
most important characteristics of their interatomic bonds are covered, and
the microscopic structure of the different groups is also treated.
For a more thorough introduction into the structure of materials the books
by Beiser [17] and Podesta [110] are recommended.
1.1 Atomic structure and the chemical bond
Atoms consist of a positively charged nucleus surrounded by negatively
charged electrons. Almost the complete mass of the atom is concentrated
in the nucleus because it comprises heavy elementary particles, the protons