Thư viện tri thức trực tuyến
Kho tài liệu với 50,000+ tài liệu học thuật
© 2023 Siêu thị PDF - Kho tài liệu học thuật hàng đầu Việt Nam

Machine translation
Nội dung xem thử
Mô tả chi tiết
Using the VitalSource® ebook
Access to the VitalBookTM ebook accompanying this book is
via VitalSource® Bookshelf – an ebook reader which allows
you to make and share notes and highlights on your ebooks
and search across all of the ebooks that you hold on your
VitalSource Bookshelf. You can access the ebook online or
offline on your smartphone, tablet or PC/Mac and your notes
and highlights will automatically stay in sync no matter where
you make them.
1. Create a VitalSource Bookshelf account at
https://online.vitalsource.com/user/new or log into
your existing account if you already have one.
2. Redeem the code provided in the panel below
to get online access to the ebook. Log in to
Bookshelf and click the Account menu at the top right
of the screen. Select Redeem and enter the redemption
code shown on the scratch-off panel below in the Code
To Redeem box. Press Redeem. Once the code has
been redeemed your ebook will download and appear in
your library.
DOWNLOAD AND READ OFFLINE
To use your ebook offline, download BookShelf to your PC,
Mac, iOS device, Android device or Kindle Fire, and log in to
your Bookshelf account to access your ebook:
On your PC/Mac
Go to http://bookshelf.vitalsource.com/ and follow the
instructions to download the free VitalSource Bookshelf
app to your PC or Mac and log into your Bookshelf account.
On your iPhone/iPod Touch/iPad
Download the free VitalSource Bookshelf App available
via the iTunes App Store and log into your Bookshelf
account. You can find more information at https://support.
vitalsource.com/hc/en-us/categories/200134217-
Bookshelf-for-iOS
On your Android™ smartphone or tablet
Download the free VitalSource Bookshelf App available
via Google Play and log into your Bookshelf account. You can
find more information at https://support.vitalsource.com/
hc/en-us/categories/200139976-Bookshelf-for-Androidand-Kindle-Fire
On your Kindle Fire
Download the free VitalSource Bookshelf App available
from Amazon and log into your Bookshelf account. You can
find more information at https://support.vitalsource.com/
hc/en-us/categories/200139976-Bookshelf-for-Androidand-Kindle-Fire
N.B. The code in the scratch-off panel can only be used once.
When you have created a Bookshelf account and redeemed
the code you will be able to access the ebook online or offline
on your smartphone, tablet or PC/Mac.
SUPPORT
If you have any questions about downloading Bookshelf,
creating your account, or accessing and using your ebook
edition, please visit http://support.vitalsource.com/
Accessing the E-book edition
Machine
Translation
Pushpak Bhattacharyya
Indian Institute of Technology Bombay
Mumbai, India
CRC Press
Taylor & Francis Group
6000 Broken Sound Parkway NW, Suite 300
Boca Raton, FL 33487-2742
© 2015 by Taylor & Francis Group, LLC
CRC Press is an imprint of Taylor & Francis Group, an Informa business
No claim to original U.S. Government works
Version Date: 20141121
International Standard Book Number-13: 978-1-4398-9719-5 (eBook - PDF)
This book contains information obtained from authentic and highly regarded sources. Reasonable efforts
have been made to publish reliable data and information, but the author and publisher cannot assume
responsibility for the validity of all materials or the consequences of their use. The authors and publishers
have attempted to trace the copyright holders of all material reproduced in this publication and apologize to
copyright holders if permission to publish in this form has not been obtained. If any copyright material has
not been acknowledged please write and let us know so we may rectify in any future reprint.
Except as permitted under U.S. Copyright Law, no part of this book may be reprinted, reproduced, transmitted, or utilized in any form by any electronic, mechanical, or other means, now known or hereafter invented,
including photocopying, microfilming, and recording, or in any information storage or retrieval system,
without written permission from the publishers.
For permission to photocopy or use material electronically from this work, please access www.copyright.
com (http://www.copyright.com/) or contact the Copyright Clearance Center, Inc. (CCC), 222 Rosewood
Drive, Danvers, MA 01923, 978-750-8400. CCC is a not-for-profit organization that provides licenses and
registration for a variety of users. For organizations that have been granted a photocopy license by the CCC,
a separate system of payment has been arranged.
Trademark Notice: Product or corporate names may be trademarks or registered trademarks, and are used
only for identification and explanation without intent to infringe.
Visit the Taylor & Francis Web site at
http://www.taylorandfrancis.com
and the CRC Press Web site at
http://www.crcpress.com
To My Mother
This page intentionally left blank
v
Contents
List of Figures .........................................................................................................xi
List of Tables ..........................................................................................................xv
Preface................................................................................................................... xix
Acknowledgments ............................................................................................xxiii
About the Author............................................................................................... xxv
1. Introduction.....................................................................................................1
1.1 A Feel for a Modern Approach to Machine Translation:
Data-Driven MT ....................................................................................2
1.2 MT Approaches: Vauquois Triangle...................................................4
1.2.1 Understanding Transfer over the Vauquois Triangle .........9
1.2.2 Understanding Ascending and Descending Transfer...... 14
1.2.2.1 Descending Transfer.............................................. 14
1.2.2.2 Ascending Transfer................................................ 16
1.2.2.3 Ascending Transfer due to Tool and
Resource Disparity................................................. 17
1.3 Language Divergence with Illustration between Hindi
and English .......................................................................................... 19
1.3.1 Syntactic Divergence ............................................................. 19
1.3.1.1 Constituent Order Divergence ............................. 19
1.3.1.2 Adjunction Divergence..........................................20
1.3.1.3 Preposition-Stranding Divergence ...................... 21
1.3.1.4 Null Subject Divergence........................................ 21
1.3.1.5 Pleonastic Divergence............................................22
1.3.2 Lexical-Semantic Divergence ...............................................22
1.3.2.1 Conflational Divergence........................................22
1.3.2.2 Categorial Divergence ...........................................23
1.3.2.3 Head-Swapping Divergence .................................23
1.3.2.4 Lexical Divergence ................................................. 24
1.4 Three Major Paradigms of Machine Translation............................25
1.5 MT Evaluation .....................................................................................29
1.5.1 Adequacy and Fluency .........................................................30
1.5.2 Automatic Evaluation of MT Output.................................. 32
1.6 Summary..............................................................................................33
Further Reading.............................................................................................34
2. Learning Bilingual Word Mappings ........................................................ 37
2.1 A Combinatorial Argument..............................................................39
2.1.1 Necessary and Sufficient Conditions for Deterministic
Alignment in Case of One-to-One Word Mapping............. 39
vi Contents
2.1.2 A Naïve Estimate for Corpora Requirement......................40
2.1.2.1 One-Changed-Rest-Same ...................................... 41
2.1.2.2 One-Same-Rest-Changed......................................42
2.2 Deeper Look at One-to-One Alignment..........................................46
2.2.1 Drawing Parallels with Part of Speech Tagging ...............46
2.3 Heuristics-Based Computation of the VE × VF Table .....................50
2.4 Iterative (EM-Based) Computation of the VE × VF Table ............... 51
2.4.1 Initialization and Iteration 1 of EM..................................... 52
2.4.2 Iteration 2 ................................................................................53
2.4.3 Iteration 3 ................................................................................54
2.5 Mathematics of Alignment................................................................56
2.5.1 A Few Illustrative Problems to Clarify
Application of EM..................................................................57
2.5.1.1 Situation 1: Throw of a Single Coin .....................57
2.5.1.2 Throw of Two Coins............................................... 57
2.5.1.3 Generalization: Throw of More Than One
“Something,” Where That “Something”
Has More Than One Outcome .............................59
2.5.2 Derivation of Alignment Probabilities ............................... 62
2.5.2.1 Key Notations ......................................................... 62
2.5.2.2 Hidden Variables (a; the alignment variables)...... 63
2.5.2.3 Parameters (θ) .........................................................63
2.5.2.4 Data Likelihood......................................................64
2.5.2.5 Data Likelihood L(D;θ), Marginalized over A..... 64
2.5.2.6 Marginalized Data Log-Likelihood LL(D, A;θ).... 64
2.5.2.7 Expectation of Data Log-Likelihood E(LL(D; Θ))... 64
2.5.3 Expressing the E- and M-Steps in Count Form................. 67
2.6 Complexity Considerations ...............................................................68
2.6.1 Storage .....................................................................................68
2.6.2 Time ......................................................................................... 70
2.7 EM: Study of Progress in Parameter Values.................................... 70
2.7.1 Necessity of at Least Two Sentences ...................................71
2.7.2 One-Same-Rest-Changed Situation.....................................71
2.7.3 One-Changed-Rest-Same Situation.....................................72
2.8 Summary..............................................................................................73
Further Reading............................................................................................. 76
3. IBM Model of Alignment ...........................................................................79
3.1 Factors Influencing P(f|e)................................................................... 81
3.1.1 Alignment Factor a ................................................................ 81
3.1.2 Length Factor m......................................................................82
3.2 IBM Model 1.........................................................................................86
3.2.1 The Problem of Summation over Product in
IBM Model 1 ...........................................................................86
Contents vii
3.2.2 EM for Computing P(f|e)......................................................88
3.2.3 Alignment in a New Input Sentence Pair .......................... 91
3.2.4 Translating a New Sentence in IBM Model 1:
Decoding ............................................................................91
3.3 IBM Model 2.........................................................................................93
3.3.1 EM for Computing P(f|e) in IBM Model 2..........................94
3.3.2 Justification for and Linguistic Viability of P(i|j,l,m)........96
3.4 IBM Model 3.........................................................................................98
3.5 Summary............................................................................................ 102
Further Reading........................................................................................... 103
4. Phrase-Based Machine Translation ........................................................ 105
4.1 Need for Phrase Alignment............................................................. 106
4.1.1 Case of Promotional/Demotional Divergence ................ 106
4.1.2 Case of Multiword (Includes Idioms) ............................... 107
4.1.3 Phrases Are Not Necessarily Linguistic Phrases............ 108
4.2 An Example to Illustrate Phrase Alignment Technique ............. 108
4.2.1 Two-Way Alignments.......................................................... 109
4.2.2 Symmetrization.................................................................... 110
4.2.3 Expansion of Aligned Words to Phrases.......................... 111
4.2.3.1 Principles of Phrase Construction ..................... 111
4.3 Phrase Table ....................................................................................... 115
4.4 Mathematics of Phrase-Based SMT................................................ 116
4.4.1 Understanding Phrase-Based Translation through
an Example............................................................................ 117
4.4.2 Deriving Translation Model and Calculating
Translation and Distortion Probabilities .......................... 119
4.4.3 Giving Different Weights to Model Parameters.............. 120
4.4.4 Fixing λ Values: Tuning ...................................................... 121
4.5 Decoding ............................................................................................122
4.5.1 Example to Illustrate Decoding .........................................125
4.6 Moses .................................................................................................. 128
4.6.1 Installing Moses................................................................... 128
4.6.2 Workflow for Building a Phrase-Based SMT System ..... 129
4.6.3 Preprocessing for Moses ..................................................... 129
4.6.4 Training Language Model.................................................. 131
4.6.5 Training Phrase Model........................................................ 131
4.6.6 Tuning.................................................................................... 132
4.6.6.1 MERT Tuning........................................................ 132
4.6.7 Decoding Test Data.............................................................. 133
4.6.8 Evaluation Metric................................................................. 133
4.6.9 More on Moses ..................................................................... 133
4.7 Summary............................................................................................ 134
Further Reading........................................................................................... 135
viii Contents
5. Rule-Based Machine Translation (RBMT)............................................ 139
5.1 Two Kinds of RBMT: Interlingua and Transfer ............................ 141
5.1.1 What Exactly Is Interlingua? .............................................. 141
5.1.2 Illustration of Different Levels of Transfer ...................... 142
5.2 Universal Networking Language (UNL)....................................... 146
5.2.1 Illustration of UNL .............................................................. 146
5.3 UNL Expressions as Binary Predicates ......................................... 148
5.3.1 Why UNL? ............................................................................ 150
5.4 Interlingua and Word Knowledge.................................................. 151
5.4.1 How Universal Are UWs?................................................... 152
5.4.2 UWs and Multilinguality ................................................... 154
5.4.3 UWs and Multiwords .......................................................... 155
5.4.3.1 How to Represent Multiwords in the UW
Dictionary.............................................................. 157
5.4.4 UW Dictionary and Wordnet............................................. 158
5.4.5 Comparing and Contrasting UW Dictionary and
Wordnet................................................................................. 159
5.5 Translation Using Interlingua ......................................................... 161
5.5.1 Illustration of Analysis and Generation ........................... 162
5.6 Details of English-to-UNL Conversion: With Illustration .......... 163
5.6.1 Illustrated UNL Generation ............................................... 164
5.7 UNL-to-Hindi Conversion: With Illustration ............................... 172
5.7.1 Function Word Insertion .................................................... 173
5.7.2 Case Identification and Morphology Generation............ 174
5.7.3 Representative Rules for Function Words Insertion....... 174
5.7.4 Syntax Planning................................................................... 175
5.7.4.1 Parent-Child Positioning..................................... 175
5.7.4.2 Prioritizing the Relations .................................... 176
5.8 Transfer-Based MT............................................................................ 177
5.8.1 What Exactly Are Transfer Rules?..................................... 177
5.9 Case Study of Marathi-Hindi Transfer-Based MT ....................... 179
5.9.1 Krudant: The Crux of the Matter in M-H MT ................. 180
5.9.1.1 Finite State Machine (FSM) Rules
for Krudanta.......................................................... 182
5.9.2 M-H MT System................................................................... 183
5.10 Summary............................................................................................ 186
Further Reading........................................................................................... 187
6. Example-Based Machine Translation..................................................... 193
6.1 Illustration of Essential Steps of EBMT.......................................... 196
6.2 Deeper Look at EBMT’s Working ................................................... 197
6.2.1 Word Matching .................................................................... 197
6.2.2 Matching of Have ................................................................. 199
6.3 EBMT and Case-Based Reasoning..................................................200
Contents ix
6.4 Text Similarity Computation........................................................... 202
6.4.1 Word Based Similarity........................................................ 202
6.4.2 Tree and Graph Based Similarity ......................................204
6.4.3 CBR’s Similarity Computation Adapted to EBMT..........205
6.5 Recombination: Adaptation on Retrieved Examples................... 207
6.5.1 Based on Sentence Parts...................................................... 207
6.5.2 Based on Properties of Sentence Parts..............................208
6.5.3 Recombination Using Parts of Semantic Graph .............. 210
6.6 EBMT and Translation Memory ..................................................... 212
6.7 EBMT and SMT ................................................................................. 212
6.8 Summary............................................................................................ 212
Further Reading........................................................................................... 213
Index ..................................................................................................................... 217
This page intentionally left blank
xi
List of Figures
Figure 1.1 Vauquois triangle expressing approaches to machine
translation ..........................................................................................5
Figure 1.2 NLP layer ...........................................................................................6
Figure 1.3 Illustration of transfer: svo → sov....................................................7
Figure 1.4 Family tree of Indo-European languages......................................... 8
Figure 1.5 Subject, verb, and object in 1.4.E ................................................... 11
Figure 1.6 Subject, verb, and object in 1.4.H .................................................. 11
Figure 1.7 Dependency representation of 1.1.H; the relations are
shown in italics................................................................................ 13
Figure 1.8 Simplified Vauquois triangle......................................................... 14
Figure 1.9 Descending transfer........................................................................ 16
Figure 1.10 Ascending transfer........................................................................ 17
Figure 1.11 Semantic role graphs of sentences 1.12.H, 1.13.H,
and 1.14.H................................................................................... 18
Figure 1.12 RBMT-EBMT-SMT spectrum: knowledge (rules)
intensive to data (learning) intensive.........................................25
Figure 1.13 Perspectivizing EBMT. EBMT is data driven like SMT,
but is closer to RBMT in its deeper analysis of the source
sentence ..........................................................................................26
Figure 1.14 Precision and recall computation ...............................................33
Figure 2.1 Partial tree: resolving correspondences with one-samerest-changed method......................................................................43
Figure 2.2 Trellis of POS tags...........................................................................47
Figure 2.3 Trellis of English words for the Hindi sentence “piitar
jaldii soya” .......................................................................................48
Figure 2.4 Adjacency list representation of VE × VF matrix ........................69
Figure 2.5 X-axis, number of iterations; Y-axis, average entropy;
average entropy decreases monotonically ..................................71
Figure 2.6 X-axis, number of iterations; Y-axis, P(x|rabbit),
where x = trois/lapins/de/grenoble .................................................72
xii List of Figures
Figure 2.7 Decrease in average entropy for one-changed-rest-same
situation............................................................................................73
Figure 2.8 X-axis, number of iterations; Y-axis, P(x|rabbits),
where x = trois/blancs/lapins/cygnes.............................................73
Figure 3.1 Alignment between an example e ←→ f pair............................. 81
Figure 3.2 Search space for best e for input f. e^ has the highest
probability value per length, alignment, and translation.........84
Figure 4.1 Tuning process ..............................................................................123
Figure 4.2 Partial hypotheses; prefixes of length 0 to 3 of final
translation...................................................................................... 126
Figure 4.3 Partial hypotheses; prefixes of length 4 to 6 of final
translation...................................................................................... 126
Figure 4.4 Partial hypotheses; prefixes of length 7 to 9 of final
translation ...................................................................................... 127
Figure 4.5 Moses control flow........................................................................ 129
Figure 4.6 Moses workflow............................................................................ 130
Figure 5.1 Simplified Vauquois triangle....................................................... 140
Figure 5.2 English parse tree for “Give obeisance to the king”................ 144
Figure 5.3 UNL graph for the sentence “On Sunday in Kolkata,
Sachin donated to the cricket museum the bat with which
he scored his hundredth century at Bangladesh”.................... 147
Figure 5.4 Concepts and their expressions in different languages.......... 152
Figure 5.5 Flow diagram for simple sentence to UNL analyzer............... 164
Figure 5.6 UNL generation for compound/complex sentences................ 165
Figure 5.7 The architecture of the generation system................................ 173
Figure 5.8 Transfer system ............................................................................. 178
Figure 5.9 Krudanta processing example .................................................... 182
Figure 5.10 FSM expressing the morphotactics of verbs: VERBS—
transition for majority of verbs; VERB_le—transition for
only those verbs that can take the ‘le’ suffix; VERBS1,
VERBS2 etc., verbs that can take particular derivational
suffixes (obvious from the diagram); DF—direct form;
OF—oblique form; and SSY—suffix stripping transition ..... 183
Figure 5.11 Marathi-Hindi transfer-based MT............................................ 184