Thư viện tri thức trực tuyến
Kho tài liệu với 50,000+ tài liệu học thuật
© 2023 Siêu thị PDF - Kho tài liệu học thuật hàng đầu Việt Nam

Machine Tools for High Performance Machining
Nội dung xem thử
Mô tả chi tiết
L.N. López de Lacalle • A. Lamikiz
Editors
Machine Tools
for High Performance
Machining
13
L.N. López de Lacalle, PhD
A. Lamikiz, PhD
Departamento de Ingeniería Mecánica
Escuela Técnica Superior de Ingenieros
Industriales
Universidad del País Vasco
Calle Alameda de Urquijo s/n
48013 Bilbao
Spain
ISBN 978-1-84800-379-8 e-ISBN 978-1-84800-380-4
DOI 10.1007/978-1-84800-380-4
British Library Cataloguing in Publication Data
Machine tools for high performance machining
1. Machine-tools
I. Lopez de Lacalle, L. N. II. Lamikiz, A.
621.9'02
ISBN-13: 9781848003798
Library of Congress Control Number: 2008932947
© 2009 Springer-Verlag London Limited
Apart from any fair dealing for the purposes of research or private study, or criticism or review, as permitted
under the Copyright, Designs and Patents Act 1988, this publication may only be reproduced, stored or
transmitted, in any form or by any means, with the prior permission in writing of the publishers, or in the case
of reprographic reproduction in accordance with the terms of licences issued by the Copyright Licensing
Agency. Enquiries concerning reproduction outside those terms should be sent to the publishers.
The use of registered names, trademarks, etc. in this publication does not imply, even in the absence of a
specific statement, that such names are exempt from the relevant laws and regulations and therefore free for
general use.
The publisher makes no representation, express or implied, with regard to the accuracy of the information
contained in this book and cannot accept any legal responsibility or liability for any errors or omissions that
may be made.
Cover design: eStudio Calamar S.L., Girona, Spain
Printed on acid-free paper
9 8 7 6 5 4 3 2 1
springer.com
vii
Preface
The machine tool has been, is and no doubt will be, a key factor in industrial and
equipment evolution, and as such, improving man’s quality of life. Both its evolution and perfectioning have come about due to the sectors where used and have
likewise improved their products due to machinery improvements.
Machines have changed greatly in the last 30 years, particularly with the incorporation of numerical control. They have gone from being mechanical machines to
real mechatronic systems, where control, drives and sensorisation are key elements. This trend is unstoppable since, thanks to the combination of improvements
in materials and mechanical design with control and algorithms executed by the
same, better precision, greater speed and worker-friendly inter-relations have been
achieved.
However, in the last 15 years an even greater change has occurred, traditional
machines, i.e., lathes, milling machines, grinders, etc., have evolved into multiprocess/multitask machines, some of which are capable of milling, drilling, turning, boring, hobbing, measuring and even tempering with laser in the same machine. Every year new concepts appear in this line from the classic machining
centre to the turning centre, multitask machines, lathe-milling machines, turninggrinding machines, etc. In some cases one hears about the “factory in a machine”,
which means all operations are performed in the same machine. Designers have
done away with many machinery stereotypes, creating designs to solve the user
problems. Perhaps we could say “milling machines” are no longer manufactured
but rather “machines which mill”, or lathes are no longer manufactured but “machines with turning capabilities”. However, we may be exaggerating since the
production sector tradition and custom tends to see them as classical machine
types, depending on the predominance of their functions or machine architectures,
etc. The tradition is the tradition and metal production is a “conservative” sector.
The wide variety of machinery and options available has complicated the update of classical sources, like books. A single author is unlikely to know all the
aspects, technologies or even the production conditions of each sector to write
a single book. Thus, the aim of this work has been to seek the contribution of
viii Preface
authors specialised in different technological fields and industrial sectors. Each
masters one of the technologies comprising machine tools, from control bases to
structure, spindles and drives, etc. Furthermore, the authors of each chapter have
not only had a fluid relation in the past but continue to do so today, thus enabling
text coherence and a common view.
In Europe, the USA, and Japan machine tooling is a sector which has undergone a great technological evolution in recent years. In this context, important
research and development projects are underway, e.g., the Integrated Project
NEXT (Next generation production systems), currently in progression in Europe,
or the CENIT “eee-Machine” project in Spain. Asian countries like China and
Korea have joined these poles and in recent years India and Turkey too. Competition is high, not only at a technological level but also a monetary level. Two key
aspects are: a) cost reduction; this might result from greater production, and b) the
need to adapt machines to each customer’s needs. Both aspects are contradictory,
and are settled using modular design ideas, greater bindings with supplier chains,
and the offer of multiple accessories on the same basic machine models.
Nevertheless, we must not lose sight of the importance of environmental impact
and machines life cycle analysis. Consuming little electricity, reducing coolant use
and eliminating electromagnetic radiations are important requirements today. The
machine must be “eco-efficient”, i.e., with minimum impact and maximum productivity and/or precision.
Machinery precision has also grown. In a hundred years we have gone from
tenths of millimetres to below hundredths, and in some cases machines border the
micron frontier.
This text is the final result of that work, which attempts to update knowledge
on machine tool machine design, construction and use. It is based on the premise
that the reader is already familiar with machinery in general and as such familiar
with the basic books. Furthermore, it is directed at the reader seeking a source
containing the advances of recent years, on display at the main sector fairs, such as
the Hanover EMO, Chicago IMTS and JIMTOF. Researchers commencing their
work on the machine tool and production sector may find this book useful.
Finally, the authors would like to point out they have gathered information
from classical sources and directly from machines existing on the market. The
machine tool is a living element with an important industry. It is impossible to
generalise without mentioning the companies which invent, improve and re-design
these machines. We should also like to express our gratitude to the companies
willing to lend their images and ideas. Indeed one of the virtues of this book is its
reference to real technology and not solely academic technology.
Bilbao, Spain, April 2008 L. N. López de Lacalle
A. Lamikiz
ix
Acknowledgements
Thanks are given to all the companies cited below for the pictures and information.
List of companies with pictures included in this book, using the commercial names
in alphabetical order:
ABB
Agie
Airbus
Air Products
Alzmetall
American Axle and Manufacturing
Automation Tooling Systems
Boehringer (MAG Boehringer)
Busak Shamban
Chiron
CMZ Machinery
CMW (Hexapode)
Danobat
Delphi
Dixi
DMG (Deckel Maho Gildemeister)
Doimak
Droop & Rein
DS Technologie (Dörries Scharmann)
Ecoroll
Edel (Die Edel Maschine)
Emag
Etxe-Tar
Fagor Automation
Fanuc
Fatronik-Tecnalia
Fidia
Forest Liné
Fraunhofer IPT
GF AgieCharmilles
GMN
Gnutti
Goratu
Haas Automation
Handtmann
Heidenhain
Heller
Henri Liné
Hermle
Hiwin
Hyprostatik
Ibag
Ibarmia
INA-FAG
Index Werke
ISW-Stuttgart
IWF-Zürich
Jobs
Kaufmann
Kern
KMT Lidköping
x Acknowledgements
Kondia
Kugler
Lagun
Laip
Lealde
M.A. Ford
Magna Powertrain
Makino
Maritool
Mazak
Micromega
Mikron
Mori Seiki
MTorres
NCG, NC Gesellschaft
Nemak
Neos Robotics
Nicolas Correa
Nomoco
Ona Electroerosión
Overbeck Danobat
Precitech
Pinacho
Pietro Carnaghi
Redex Andantex
Röders
Parallel Robotic Systems
SAE International
Sankyo Seiki
Schaudt (Studer Schaudt)
Schneeberger
Shuton
Siemens
Sisamex
SKC
SLF
Spring Technologies
Sumitomo
Starragheckert
System 3R
Tekniker-IK4
THK
Toyoda
Tschudin
Ultra Tech Machinery
Weisser
WFL Millturn Technologies
Zayer
xi
Content
Contributors..................................................................................................... xix
1 Machine Tools for Removal Processes: A General View..................... 1
L. Norberto López de Lacalle and A. Lamikiz
1.1 Basic Definitions and History........................................................ 1
1.1.1 Historical Remarks........................................................... 2
1.2 The Functions and Requirements of a Machine Tool.................... 8
1.2.1 User and Technological Requirements ............................ 9
1.3 The Basic Mechanism ................................................................... 13
1.4 The Machine Structure .................................................................. 16
1.4.1 Machine Foundations....................................................... 18
1.4.2 Structural Components Materials..................................... 18
1.4.3 Structural Analysis........................................................... 19
1.4.4 Modularity........................................................................ 22
1.5 Guideways..................................................................................... 23
1.5.1 Guides with Limit Lubrication......................................... 25
1.5.2 Rolling Guides ................................................................. 25
1.5.3 Hydrostatic Guides........................................................... 26
1.6 The Definition of the Main Motion ............................................... 27
1.7 The Definition of the Drive Trains ................................................ 29
1.8 The CNC Implementation ............................................................. 30
1.9 Machine Verification..................................................................... 33
1.10 Typical Machines for Several Applications and Sectors ............... 34
1.10.1 A Machine for Big Structural Turbine Parts .................... 34
1.10.2 A Horizontal Milling Centre
for Automotive Components............................................ 35
1.10.3 A Milling Centre for Moulds ........................................... 37
1.10.4 A Milling Machine for Big Dies and Moulds .................. 37
1.10.5 Conventional Machines for Auxiliary Operations ........... 38
1.10.6 CNC Milling Machines for General Production .............. 40
xii Content
1.10.7 A Heavy-duty Lathe......................................................... 40
1.10.8 A Mitre Band Saw............................................................ 41
1.10.9 Transfer Machines............................................................ 42
1.10.10 A Milling and Boring Centre ........................................... 43
1.11 The Book Organisation.................................................................. 43
References................................................................................................. 44
2 New Concepts for Structural Components........................................... 47
J. Zulaika and F. J. Campa
2.1 Introduction and Definitions.......................................................... 47
2.2 Optimised Machine Structures ...................................................... 49
2.2.1 A Comparison Among Different
Machine Configurations................................................... 50
2.2.2 Structural Components in Machine Structures................. 53
2.2.3 Robust Rams and Columns .............................................. 54
2.3 Structural Optimisation in Machines............................................. 56
2.3.1 Mechanical Requirements for Eco-efficient Machines .... 56
2.3.2 FEM Modelling................................................................ 58
2.3.3 Topological Optimisation ................................................ 60
2.4 Structural Materials ....................................................................... 61
2.4.1 Involved Parameters......................................................... 61
2.4.2 Conventional Materials for Structural Components......... 62
2.4.3 Innovative Materials for Structural Components ............. 63
2.4.4 Costs of Design Materials and Structures ........................ 65
2.4.5 The Influence of Innovative Materials on Productivity ... 65
2.5 Active Damping Devices............................................................... 66
2.5.1 The Implementation of ADDs to Machine Structures...... 67
2.6 The Influence of New Structural Concepts on Productivity.......... 68
2.6.1 The Influence of New Design Concepts
for Structural Components ............................................... 68
2.6.2 The Influence of ADDs on Productivity .......................... 71
2.7 Future Trends in Structural Components for Machines................. 72
References................................................................................................. 72
3 Machine Tool Spindles ........................................................................... 75
G. Quintana, J. de Ciurana and F. J. Campa
3.1 Introduction ................................................................................... 75
3.2 Types of Spindles .......................................................................... 78
3.2.1 Belt-driven Spindles......................................................... 78
3.2.2 Gear-driven Spindles........................................................ 79
3.2.3 Direct Drive Spindles....................................................... 79
3.2.4 Integrated (Built-in) Drive Spindles................................. 80
3.3 Spindle Configurations.................................................................. 80
3.3.1 Common Configurations:
Vertical and Horizontal Spindles ..................................... 81
Content xiii
3.3.2 Machines with Rotary Headstocks................................... 81
3.3.3 A Main Spindle with an Auxiliary Spindle...................... 82
3.3.4 Twin Spindles and Multi-spindles ................................... 83
3.3.5 Automatic Head Exchange............................................... 83
3.4 Basic Elements of the Spindle ....................................................... 84
3.4.1 Motors.............................................................................. 85
3.4.2 Bearings ........................................................................... 87
3.4.3 The Toolholder................................................................. 95
3.4.4 The Drawbar .................................................................... 102
3.4.5 The Shaft.......................................................................... 103
3.4.6 The Sensors...................................................................... 103
3.4.7 The Housing..................................................................... 104
3.5 Spindle Properties and Performance.............................................. 105
3.5.1 Spindle Power and Torque
versus Spindle Speed Curves ........................................... 105
3.5.2 The Stiffness .................................................................... 106
3.5.3 Dynamic Behaviour and Vibrations................................. 108
3.5.4 The Thermal Behaviour ................................................... 115
3.5.5 Spindles in Use: Other Problems ..................................... 119
3.6 Spindle Selection........................................................................... 120
3.6.1 Conventional Machining or HSM.................................... 121
3.6.2 Tool Selection .................................................................. 122
3.6.3 The Workpiece Material .................................................. 123
3.6.4 Power and Spindle Speed Requirements.......................... 123
3.7 Brief Conclusions .......................................................................... 125
References................................................................................................. 126
4 New Developments in Drives and Tables.............................................. 129
A. Olarra, I. Ruiz de Argandoña and L. Uriarte
4.1 Introduction ................................................................................... 129
4.1.1 Precision and Dynamics................................................... 130
4.2 Linear Drives by Ball Screws........................................................ 132
4.2.1 Dimensioning................................................................... 132
4.2.2 The Rotary Screw............................................................. 138
4.2.3 Other Configurations........................................................ 138
4.3 Linear Drives by Rack and Pinion................................................. 139
4.3.1 The Elimination of the Gap.............................................. 139
4.3.2 Dimensioning................................................................... 141
4.3.3 Dynamic Models of the Drives ........................................ 142
4.4 Linear Drives by Linear Motors .................................................... 142
4.4.1 Mounting.......................................................................... 144
4.4.2 Configurations.................................................................. 144
4.5 Rotary Drives ................................................................................ 145
4.5.1 Mechanical Transmissions............................................... 145
4.5.2 Direct Rotary Drives ........................................................ 146
xiv Content
4.6 Guidance Systems ......................................................................... 147
4.6.1 Friction Guides................................................................. 147
4.6.2 Rolling Guides ................................................................. 150
4.6.3 Hydrostatic Guides........................................................... 152
4.6.4 Aerostatic Guides............................................................. 156
4.7 The Present and the Future ............................................................ 157
4.7.1 Rolling Guides with Integrated Functions ....................... 157
4.7.2 The Hydrostatic Shoe on Guide Rails.............................. 157
4.7.3 Guiding and Actuation through Magnetic Levitation ...... 158
References................................................................................................. 158
5 Advanced Controls for New Machining Processes .............................. 159
J. Ramón Alique and R. Haber
5.1 Introduction and History................................................................ 159
5.1.1 Computer Numerical Control
and Direct Numerical Control.......................................... 160
5.1.2 Networked Control and Supervision................................ 163
5.2 New Machining Processes............................................................. 164
5.2.1 High Speed Machining..................................................... 165
5.2.2 Micromechanical Machining ........................................... 166
5.2.3 An Introduction to Nanomachining Processes ................. 167
5.3 Today’s CNCs: Machine Level Control ........................................ 168
5.3.1 The Interpolation Process................................................. 169
5.3.2 The Position Control Servomechanism............................ 174
5.4 Advanced CNCs: Multi-level Hierarchical Control ...................... 179
5.4.1 The Control of the Machining Process............................. 181
5.4.2 The Supervisory Control of the Machining Process:
Merit Variables ................................................................ 183
5.5 The Sensory System for Machining Processes .............................. 185
5.5.1 Correct Monitoring Conditions........................................ 188
5.5.2 Machining Characteristics and their Measurement .......... 189
5.5.3 Two Case Studies............................................................. 190
5.6 Open-Architecture CNC Systems.................................................. 194
5.6.1 Networked Control and Supervision................................ 195
5.7 Programming Support Systems: Manual Programming ................ 202
5.7.1 Computer Assisted Programming .................................... 207
5.7.2 Graphical Simulation ....................................................... 209
5.8 Current CNC Architectures ........................................................... 210
5.8.1 Systems Based on Multi-microprocessor Architecture .... 211
5.8.2 The PC Front-end............................................................. 211
5.8.3 The Motion Control Card with a PC ................................ 212
5.8.4 The Software-based Solution ........................................... 212
5.8.5 Fully Digital Architectures:
Towards the Intelligent Machine Tool............................. 214
References................................................................................................. 216
Content xv
6 Machine Tool Performance and Precision............................................ 219
A. Lamikiz, L. N. Lopez de Lacalle and A. Celaya
6.1 Introduction and Definitions.......................................................... 220
6.1.1 An Introduction to Precision Machining.......................... 220
6.1.2 Basic Definitions:
Accuracy, Repeatability and Resolution .......................... 223
6.1.3 Historical Remarks and the State of the Art..................... 224
6.2 Basic Design Principles and an Error Budget................................ 225
6.2.1 Sources of Errors in Machine Tools................................. 226
6.2.2 Error Budget Estimation .................................................. 227
6.2.3 Basic Principles for Precision Machine Design ............... 231
6.2.4 Error Propagation............................................................. 237
6.2.5 Thermal Errors................................................................. 240
6.2.6 CNC Interpolation Errors................................................. 244
6.3 Errors Originated by the Machining Process................................. 245
6.3.1 Errors Originated in the CNC Program Generation ......... 245
6.3.2 Errors Originated by the Tool Wear................................. 247
6.3.3 Tool Deflection Error....................................................... 248
6.4 Verification Procedures ................................................................. 251
6.4.1 Standard Procedures for Machine Tool Validation.......... 252
6.4.2 Test Parts.......................................................................... 257
6.5 A Brief Conclusion........................................................................ 258
References................................................................................................. 259
7 New Developments in Lathes and Turning Centres ............................ 261
R. Lizarralde, A. Azkarate and O. Zelaieta
7.1 Introduction ................................................................................... 261
7.2 Machine Configuration.................................................................. 262
7.2.1 High Production Lathes ................................................... 262
7.2.2 Turning Centres: Multi-tasking Machines ....................... 265
7.3 The Latest Technologies Applied to Lathes
and Turning Centres ...................................................................... 270
7.3.1 General Configuration Technologies ............................... 270
7.3.2 Complementary Technologies to Improve
Machine Performance ...................................................... 271
7.4 Special Machining Processes Applied
in Multi-tasking Machines............................................................. 272
7.4.1 The Laser Application...................................................... 272
7.4.2 Roller Burnishing and Deep Rolling................................ 273
7.4.3 Ultrasonic Assisted Turning............................................. 275
7.4.4 Cryogenic Gas Assisted Turning ..................................... 276
7.4.5 High-pressure Coolant Assisted Machining..................... 277
References................................................................................................. 278
xvi Content
8 High Performance Grinding Machines................................................. 279
R. Lizarralde, J. A. Marañón, A. Mendikute and H. Urreta
8.1 Introduction ................................................................................... 279
8.2 The Machine Configuration........................................................... 280
8.2.1 The Machine Architecture ............................................... 281
8.2.2 Materials Applied in Structural Parts............................... 286
8.2.3 Main Components............................................................ 288
8.2.4 Wheel Dressing Systems.................................................. 291
8.2.5 Process Lubrication and Cooling ..................................... 296
8.2.6 Integrated Measuring Devices.......................................... 297
8.3 Special Grinding Processes ........................................................... 299
8.3.1 Peel Grinding–Quick Point .............................................. 299
8.3.2 Speed Stroke Grinding..................................................... 300
8.3.3 Creep Feed Grinding........................................................ 301
8.3.4 High Efficiency Deep Grinding ....................................... 302
8.4 Machine and Process Monitoring and Control .............................. 302
8.4.1 Monitored Parameters and Applied Sensors .................... 303
8.4.2 Control Strategies............................................................. 304
References................................................................................................. 305
9 Wire Electrical Discharge Machines..................................................... 307
J. A. Sánchez and N. Ortega
9.1 Introduction ................................................................................... 307
9.2 The WEDM Process ...................................................................... 310
9.2.1 Accuracy and Speed......................................................... 312
9.3 WEDM Machines.......................................................................... 315
9.3.1 Wire Transport and Wire Thread Devices ....................... 318
9.3.2 Machine Automation........................................................ 319
9.3.3 Workpiece Fixturing Systems.......................................... 321
9.3.4 Filtering Systems ............................................................. 322
9.4 Wires for WEDM .......................................................................... 323
9.5 The Wire EDM of Advanced Materials......................................... 326
9.5.1 Aeronautical Alloys ......................................................... 326
9.5.2 Tungsten Carbide ............................................................. 327
9.5.3 Advanced Ceramics and PCD.......................................... 328
9.6 Thin-wire EDM ............................................................................. 330
References................................................................................................. 332
10 Parallel Kinematics for Machine Tools................................................. 335
O. Altuzarra, A. Hernández, Y. San Martín and J. Larranaga
10.1 Introduction ................................................................................... 335
10.2 Main Characteristics of the Parallel Kinematic Machines............. 337
10.3 A Classification of the Parallel Kinematic Machines.................... 338
10.4 A Design Methodology for Parallel Kinematic Machines............. 339
10.4.1 The Motion Pattern .......................................................... 340
Content xvii
10.4.2 The Type Synthesis.......................................................... 341
10.4.3 The Position Analysis ...................................................... 345
10.4.4 Velocity Analysis, Singularities and Dynamics............... 347
10.4.5 The Optimisation ............................................................. 349
10.5 The Kinematic Calibration of PKMs............................................. 349
10.5.1 A Mathematical Approach ............................................... 351
10.5.2 Measuring on External Methods ...................................... 353
10.5.3 Self-calibration Strategies ................................................ 358
10.6 The Control of Parallel Kinematic Machines ................................ 358
10.6.1 Models Specific to Parallel Kinematics Machines........... 360
10.6.2 The Dynamic Controller .................................................. 361
10.6.3 The Model-based Predictive Controller ........................... 363
10.7 Conclusions and Future Trends ..................................................... 365
References................................................................................................. 366
11 Micromilling Machines........................................................................... 369
L. Uriarte, J. Eguia and F. Egaña
11.1 Introduction and Definitions.......................................................... 369
11.2 The Micromilling Process ............................................................. 371
11.2.1 Micromilling Tools .......................................................... 372
11.2.2 Applications ..................................................................... 374
11.3 Miniaturised Machine Tools.......................................................... 376
11.4 Machine Drives ............................................................................. 377
11.4.1 Conventional Ball Screw Configuration .......................... 377
11.4.2 Friction Drives ................................................................. 379
11.4.3 The Linear Motor............................................................. 380
11.4.4 New Tendencies: Hydrostatic Screws.............................. 382
11.5 Guideways..................................................................................... 383
11.5.1 Special Rolling Guides Configurations............................ 383
11.5.2 Aerostatic and Hydrostatic Guides................................... 384
11.5.3 New Tendencies:
Magnetic and Flexure Guidance Systems ........................ 386
11.6 The High Speed Spindle and Collet............................................... 389
11.6.1 Alternatives: Hydrostatic and Magnetic Spindles............ 390
11.7 Measuring Systems........................................................................ 392
11.8 Examples ....................................................................................... 393
11.8.1 The Kern® Pyramid Nano ................................................ 393
11.8.2 The Kugler® Microgantry nano 3/5X............................... 395
References................................................................................................. 396
12 Machines for the Aeronautical Industry............................................... 399
J. Fernández and M. Arizmendi
12.1 Aeronautical Business ................................................................... 399
12.2 Aerospace Components ................................................................. 400
12.2.1 Aerospace Structures........................................................ 401
xviii Content
12.2.2 Aerospace Engines........................................................... 402
12.2.3 Accessories ...................................................................... 403
12.3 Aerospace Materials ...................................................................... 403
12.4 Costs, Weight and Precision in Machine Tools
for Aerospace Machining .............................................................. 405
12.4.1 The Drive to Reduce Aircraft Costs................................. 406
12.4.2 The Drive to Reduce Aircraft Weight.............................. 407
12.4.3 The Drive for Aircraft Component Precision................... 407
12.5 Machine Tools for Aeronautical Components............................... 408
12.5.1 Machine Tools for Machining Aeronautical Structures ... 409
12.5.2 Machine Tools for Machining Engine Components ........ 413
12.5.3 Machine Tools for Machining Accessories
and Structure Fittings....................................................... 417
References................................................................................................. 419
13 Machine Tools for the Automotive Industry ........................................ 421
Ciro A. Rodríguez and Horacio Ahuett
13.1 World Trends in Automotive Production ...................................... 421
13.1.1 The Economic Impact of the Automotive Industry.......... 421
13.1.2 Machining Processes in Automotive Production ............. 422
13.2 Manufacturing System Architecture:
High Volume Production Versus Flexibility ................................. 423
13.2.1 Dedicated Machines......................................................... 424
13.2.2 Flexible Cells ................................................................... 427
13.2.3 Hybrid Systems................................................................ 429
13.3 Technology Trends........................................................................ 433
References................................................................................................. 435
Index ................................................................................................................. 437
xix
Contributors
Dr. Norberto López de Lacalle
(Chaps. 1 and 6)
Department
of Mechanical Engineering,
University of the Basque Country,
Escuela Técnica Superior
de Ingeniería,
c/Alameda de Urquijo s/n,
48013, Bilbao, Spain
www.ehu.es/manufacturing
Dr. Aitzol Lamikiz
(Chaps. 1 and 6)
Department
of Mechanical Engineering,
University of the Basque Country,
Escuela Técnica Superior
de Ingeniería,
c/Alameda de Urquijo s/n,
48013, Bilbao, Spain
www.ehu.es/manufacturing
Eng. Juanjo Zulaika
(Chap. 2)
Foundation Fatronik-Tecnalia,
Paseo Mikeletegi 7,
20009, Donostia-San Sebastián, Spain
Dr. Francisco Javier Campa
(Chaps. 2 and 3)
Department
of Mechanical Engineering,
University of the Basque Country,
Escuela Técnica Superior
de Ingeniería,
c/Alameda de Urquijo s/n,
48013, Bilbao, Spain
www.ehu.es/manufacturing
Dr. Joaquim de Ciurana
(Chap. 3)
Department of Mechanical
Engineering and Civil Construction,
University of Girona,
Escola Politècnica Superior,
Av/ Lluís Santaló s/n,
17003, Girona, Spain
Eng. Guillem Quintana
(Chap. 3)
Department of Mechanical
Engineering and Civil Construction,
University of Girona,
Escola Politècnica Superior,
Av/ Lluís Santaló s/n,
17003, Girona, Spain