Siêu thị PDFTải ngay đi em, trời tối mất

Thư viện tri thức trực tuyến

Kho tài liệu với 50,000+ tài liệu học thuật

© 2023 Siêu thị PDF - Kho tài liệu học thuật hàng đầu Việt Nam

Machine Learning cơ bản
PREMIUM
Số trang
422
Kích thước
22.9 MB
Định dạng
PDF
Lượt xem
706

Machine Learning cơ bản

Nội dung xem thử

Mô tả chi tiết

Machine Learning cơ bản

Cập nhật lần cuối: 20/01/2020.

Bản quyền ©2016 – 2020: Vũ Hữu Tiệp

Mọi hình thức sao chép, in ấn đều cần được sự đồng ý của tác giả. Mọi chia sẻ

đều cần được dẫn nguồn tới https://github.com/tiepvupsu/ebookMLCB.

Mục lục

Mục lục

0 Lời nói đầu . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

0.1 Mục đích của cuốn sách . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

0.2 Hướng tiếp cận của cuốn sách . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

0.3 Đối tượng của cuốn sách . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

0.4 Yêu cầu về kiến thức . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

0.5 Mã nguồn đi kèm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

0.6 Bố cục của cuốn sách . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

0.7 Các lưu ý về ký hiệu . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

0.8 Tham khảo thêm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

0.9 Đóng góp ý kiến . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

0.10 Lời cảm ơn . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

0.11 Bảng các ký hiệu . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

Phần I Kiến thức toán cơ bản

1 Ôn tập Đại số tuyến tính . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

1.1 Lưu ý về ký hiệu . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

1.2 Chuyển vị và Hermitian . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

4 Machine Learning cơ bản

Mục lục

1.3 Phép nhân hai ma trận . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

1.4 Ma trận đơn vị và ma trận nghịch đảo. . . . . . . . . . . . . . . . . . . . . . . . . 27

1.5 Một vài ma trận đặc biệt khác . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

1.6 Định thức . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

1.7 Tổ hợp tuyến tính, không gian sinh . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

1.8 Hạng của ma trận . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

1.9 Hệ trực chuẩn, ma trận trực giao . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

1.10 Biễu diễn vector trong các hệ cơ sở khác nhau . . . . . . . . . . . . . . . . . . 34

1.11 Trị riêng và vector riêng . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

1.12 Chéo hoá ma trận . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

1.13 Ma trận xác định dương . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

1.14 Chuẩn . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

1.15 Vết . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

2 Giải tích ma trận . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

2.1 Gradient của hàm trả về một số vô hướng . . . . . . . . . . . . . . . . . . . . . 43

2.2 Gradient của hàm trả về vector . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

2.3 Tính chất quan trọng của gradient . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

2.4 Gradient của các hàm số thường gặp . . . . . . . . . . . . . . . . . . . . . . . . . 46

2.5 Bảng các gradient thường gặp . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

2.6 Kiểm tra gradient . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

3 Ôn tập Xác suất . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

3.1 Xác suất . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

3.2 Một vài phân phối thường gặp . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

Machine Learning cơ bản 5

Mục lục

4 Ước lượng tham số mô hình . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

4.1 Giới thiệu . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

4.2 Ước lượng hợp lý cực đại . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

4.3 Ước lượng hậu nghiệm cực đại . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

4.4 Tóm tắt . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

Phần II Tổng quan

5 Các khái niệm cơ bản. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

5.1 Nhiệm vụ, kinh nghiệm, phép đánh giá . . . . . . . . . . . . . . . . . . . . . . . . 80

5.2 Dữ liệu . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

5.3 Các bài toán cơ bản trong machine learning . . . . . . . . . . . . . . . . . . . . 82

5.4 Phân nhóm các thuật toán machine learning . . . . . . . . . . . . . . . . . . . 84

5.5 Hàm mất mát và tham số mô hình . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

6 Các kỹ thuật xây dựng đặc trưng . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

6.1 Giới thiệu . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

6.2 Mô hình chung cho các bài toán machine learning . . . . . . . . . . . . . . 89

6.3 Một số kỹ thuật trích chọn đặc trưng . . . . . . . . . . . . . . . . . . . . . . . . . 91

6.4 Học chuyển tiếp cho bài toán phân loại ảnh . . . . . . . . . . . . . . . . . . . . 96

6.5 Chuẩn hoá vector đặc trưng . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

7 Hồi quy tuyến tính . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

7.1 Giới thiệu . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

7.2 Xây dựng và tối ưu hàm mất mát . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

7.3 Ví dụ trên Python . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

6 Machine Learning cơ bản

Mục lục

7.4 Thảo luận . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

8 Quá khớp . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108

8.1 Giới thiệu . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108

8.2 Xác thực . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

8.3 Cơ chế kiểm soát . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

8.4 Đọc thêm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115

Phần III Khởi động

9 K lân cận . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118

9.1 Giới thiệu . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118

9.2 Phân tích toán học . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119

9.3 Ví dụ trên cơ sở dữ liệu Iris . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122

9.4 Thảo luận . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126

10 Phân cụm K-means . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128

10.1 Giới thiệu . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128

10.2 Phân tích toán học . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129

10.3 Ví dụ trên Python . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133

10.4 Phân cụm chữ số viết tay . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136

10.5 Tách vật thể trong ảnh . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139

10.6 Nén ảnh . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140

10.7 Thảo luận . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141

Machine Learning cơ bản 7

Mục lục

11 Bộ phân loại naive Bayes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145

11.1 Bộ phân loại naive Bayes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145

11.2 Các phân phối thường dùng trong NBC . . . . . . . . . . . . . . . . . . . . . . . 147

11.3 Ví dụ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148

11.4 Thảo luận . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155

Phần IV Mạng neuron nhân tạo

12 Gradient descent . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 158

12.1 Giới thiệu . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 158

12.2 Gradient descent cho hàm một biến . . . . . . . . . . . . . . . . . . . . . . . . . . . 159

12.3 Gradient descent cho hàm nhiều biến . . . . . . . . . . . . . . . . . . . . . . . . . . 164

12.4 Gradient descent với momentum . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 167

12.5 Nesterov accelerated gradient . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 170

12.6 Stochastic gradient descent . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 171

12.7 Thảo luận . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 173

13 Thuật toán học perceptron . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 175

13.1 Giới thiệu . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 175

13.2 Thuật toán học perceptron . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 176

13.3 Ví dụ và minh hoạ trên Python . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 179

13.4 Mô hình mạng neuron đầu tiên . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 180

13.5 Thảo Luận . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 183

8 Machine Learning cơ bản

Mục lục

14 Hồi quy logistic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 185

14.1 Giới thiệu . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 185

14.2 Hàm mất mát và phương pháp tối ưu . . . . . . . . . . . . . . . . . . . . . . . . . 188

14.3 Triển khai thuật toán trên Python . . . . . . . . . . . . . . . . . . . . . . . . . . . . 190

14.4 Tính chất của hồi quy logistic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 193

14.5 Bài toán phân biệt hai chữ số viết tay . . . . . . . . . . . . . . . . . . . . . . . . 195

14.6 Bài toán phân loại đa lớp . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 196

14.7 Thảo luận . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 198

15 Hồi quy softmax . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 201

15.1 Giới thiệu . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 201

15.2 Hàm softmax . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 202

15.3 Hàm mất mát và phương pháp tối ưu . . . . . . . . . . . . . . . . . . . . . . . . . 205

15.4 Ví dụ trên Python . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 211

15.5 Thảo luận . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 213

16 Mạng neuron đa tầng và lan truyền ngược . . . . . . . . . . . . . . . . . . . . 214

16.1 Giới thiệu . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 214

16.2 Các ký hiệu và khái niệm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 217

16.3 Hàm kích hoạt . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 218

16.4 Lan truyền ngược . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 220

16.5 Ví dụ trên Python . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 225

16.6 Suy giảm trọng số . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 230

16.7 Đọc thêm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 232

Machine Learning cơ bản 9

Mục lục

Phần V Hệ thống gợi ý

17 Hệ thống gợi ý dựa trên nội dung . . . . . . . . . . . . . . . . . . . . . . . . . . . . 234

17.1 Giới thiệu . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 234

17.2 Ma trận tiện ích . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 235

17.3 Hệ thống dựa trên nội dung . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 237

17.4 Bài toán MovieLens 100k . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 240

17.5 Thảo luận . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 244

18 Lọc cộng tác lân cận . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 245

18.1 Giới thiệu . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 245

18.2 Lọc cộng tác theo người dùng . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 246

18.3 Lọc cộng tác sản phẩm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 251

18.4 Lập trình trên Python . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 253

18.5 Thảo luận . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 256

19 Lọc cộng tác phân tích ma trận . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 257

19.1 Giới thiệu . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 257

19.2 Xây dựng và tối ưu hàm mất mát . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 259

19.3 Lập trình Python . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 261

19.4 Thảo luận . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 264

10 Machine Learning cơ bản

Mục lục

Phần VI Giảm chiều dữ liệu

20 Phân tích giá trị suy biến. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 266

20.1 Giới thiệu . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 266

20.2 Phân tích giá trị suy biến . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 267

20.3 Phân tích giá trị suy biến cho bài toán nén ảnh . . . . . . . . . . . . . . . . . 271

20.4 Thảo luận . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 273

21 Phân tích thành phần chính . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 274

21.1 Phân tích thành phần chính. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 274

21.2 Các bước thực hiện phân tích thành phần chính . . . . . . . . . . . . . . . . 279

21.3 Liên hệ với phân tích giá trị suy biến . . . . . . . . . . . . . . . . . . . . . . . . . . 280

21.4 Làm thế nào để chọn số chiều của dữ liệu mới . . . . . . . . . . . . . . . . . . 282

21.5 Lưu ý về tính toán phân tích thành phần chính . . . . . . . . . . . . . . . . . 282

21.6 Một số ứng dụng . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 283

21.7 Thảo luận . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 287

22 Phân tích biệt thức tuyến tính. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 288

22.1 Giới thiệu . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 288

22.2 Bài toán phân loại nhị phân . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 290

22.3 Bài toán phân loại đa lớp . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 293

22.4 Ví dụ trên Python . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 297

22.5 Thảo luận . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 299

Machine Learning cơ bản 11

Mục lục

Phần VII Tối ưu lồi

23 Tập lồi và hàm lồi . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 302

23.1 Giới thiệu . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 302

23.2 Tập lồi . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 304

23.3 Hàm lồi . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 309

23.4 Tóm tắt . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 319

24 Bài toán tối ưu lồi . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 320

24.1 Giới thiệu . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 320

24.2 Nhắc lại bài toán tối ưu . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 324

24.3 Bài toán tối ưu lồi . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 326

24.4 Quy hoạch tuyến tính . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 329

24.5 Quy hoạch toàn phương . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 332

24.6 Quy hoạch hình học . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 334

24.7 Tóm tắt . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 337

25 Đối ngẫu . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 338

25.1 Giới thiệu . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 338

25.2 Hàm đối ngẫu Lagrange . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 339

25.3 Bài toán đối ngẫu Lagrange . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 342

25.4 Các điều kiện tối ưu . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 344

25.5 Tóm tắt . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 346

12 Machine Learning cơ bản

Mục lục

Phần VIII Máy vector hỗ trợ

26 Máy vector hỗ trợ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 350

26.1 Giới thiệu . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 350

26.2 Xây dựng bài toán tối ưu cho máy vector hỗ trợ . . . . . . . . . . . . . . . . 352

26.3 Bài toán đối ngẫu của máy vector hỗ trợ . . . . . . . . . . . . . . . . . . . . . . . 354

26.4 Lập trình tìm nghiệm cho máy vector hỗ trợ . . . . . . . . . . . . . . . . . . . 357

26.5 Tóm tắt . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 359

27 Máy vector hỗ trợ lề mềm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 361

27.1 Giới thiệu . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 361

27.2 Phân tích toán học . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 362

27.3 Bài toán đối ngẫu Lagrange . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 364

27.4 Bài toán tối ưu không ràng buộc cho SVM lề mềm . . . . . . . . . . . . . 367

27.5 Lập trình với SVM lề mềm. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 372

27.6 Tóm tắt và thảo luận . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 376

28 Máy vector hỗ trợ hạt nhân . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 378

28.1 Giới thiệu . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 378

28.2 Cơ sở toán học . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 380

28.3 Hàm số hạt nhân . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 382

28.4 Ví dụ minh họa . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 384

28.5 Tóm tắt . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 386

Machine Learning cơ bản 13

Mục lục

29 Máy vector hỗ trợ đa lớp . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 387

29.1 Giới thiệu . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 387

29.2 Xây dựng hàm mất mát . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 390

29.3 Tính toán giá trị và gradient của hàm mất mát . . . . . . . . . . . . . . . . . 393

29.4 Thảo luận . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 400

A Phương pháp nhân tử Lagrange . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 402

B Ảnh màu . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 405

Tài liệu tham khảo . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 409

Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 415

14 Machine Learning cơ bản

Chương 0. Lời nói đầu

Chương 0

Lời nói đầu

Những năm gần đây, trí tuệ nhân tạo (artificial intelligence, AI) dần nổi lên

như một minh chứng cho cuộc cách mạng công nghiệp lần thứ tư, sau động cơ hơi

nước, năng lượng điện và công nghệ thông tin. Trí tuệ nhân tạo đã và đang trở

thành nhân tố cốt lõi trong các hệ thống công nghệ cao. Thậm chí, nó đã len lỏi

vào hầu hết các lĩnh vực của đời sống mà có thể chúng ta không nhận ra. Xe tự

hành của Google và Tesla, hệ thống tự tag khuôn mặt trong ảnh của Facebook,

trợ lý ảo Siri của Apple, hệ thống gợi ý sản phẩm của Amazon, hệ thống gợi ý

phim của Netflix, hệ thống dịch đa ngôn ngữ Google Translate, máy chơi cờ vây

AlphaGo và gần đây là AlphaGo Zero của Google DeepMind,... chỉ là một vài

ứng dụng nổi bật trong vô vàn những ứng dụng của trí tuệ nhân tạo.

Học máy (machine learning, ML) là một tập con của trí tuệ nhân tạo. Machine

learning là một lĩnh vực nhỏ trong khoa học máy tính, có khả năng tự học hỏi

dựa trên dữ liệu được đưa vào mà không cần phải được lập trình cụ thể (Machine

Learning is the subfield of computer science, that “gives computers the ability to

learn without being explicitly programmed” – Wikipedia).

Những năm gần đây, sự phát triển của các hệ thống tính toán cùng lượng dữ liệu

khổng lồ được thu thập bởi các hãng công nghệ lớn đã giúp machine learning tiến

thêm một bước dài. Một lĩnh vực mới được ra đời được gọi là học sâu (deep

learning, DL). Deep learning đã giúp máy tính thực thi những việc vào mười năm

trước tưởng chừng là không thể: phân loại cả ngàn vật thể khác nhau trong các

bức ảnh, tự tạo chú thích cho ảnh, bắt chước giọng nói và chữ viết, giao tiếp với

con người, chuyển đổi ngôn ngữ, hay thậm chí cả sáng tác văn thơ và âm nhạc1

.

1 Đọc thêm: 8 Inspirational Applications of Deep Learning (https://goo.gl/Ds3rRy).

Machine Learning cơ bản 15

Tải ngay đi em, còn do dự, trời tối mất!