Thư viện tri thức trực tuyến
Kho tài liệu với 50,000+ tài liệu học thuật
© 2023 Siêu thị PDF - Kho tài liệu học thuật hàng đầu Việt Nam

Linear and nonlinear analysis for transduced current curves of electrochemical biosensors :Doctor of Philosophy - Major: Computer Science
Nội dung xem thử
Mô tả chi tiết
Doctor of Philosophy Dissertation
Linear and Nonlinear Analysis for
Transduced Current Curves of
Electrochemical Biosensors
Graduate School of Chonnam National University
Department of Computer Engineering
HUYNH TRUNG HIEU
Directed by Professor Yonggwan Won
February 2009
TABLE OF CONTENTS
TABLE OF CONTENTS...........................................................................................i
LIST OF FIGURES ...................................................................................................v
LIST OF TABLES .....................................................................................................ix
LIST OF ABBREVIATIONS ....................................................................................x
Abstract.....................................................................................................................xii
CHAPTER I. INTRODUCTION ...........................................................................1
1.1 Statement of the Problem..............................................................................1
1.2 Objective and Approach................................................................................3
1.2.1 Overview .............................................................................................3
1.2.2 Approaches and Contributions ............................................................5
1.2.3 Data Acquisition ..................................................................................8
1.3 Organization..................................................................................................8
CHAPTER II. LITERATURE REVIEW..............................................................10
2.1 Linear Models ...............................................................................................11
2.1.1 Overview .............................................................................................11
2.1.2 Parameter Estimation in the Linear Model..........................................13
a) Minimum Variance Unbiased estimation ........................................13
b) Maximum Likelihood Estimation (MLE).......................................15
c) Least Squares (LS)..........................................................................16
d) Linear Bayesian Estimators.............................................................19
2.2 Feedforward Neural Networks......................................................................22
2.2.1 Neural Networks and Feedforward Operation ....................................23
i
2.2.2 Gradient-descent based Learning Algorithms .....................................24
2.2.3 Practical Techniques for Improving Backpropagation ........................26
2.2.4 Theoretical Foundations for Improving Backpropagation ..................27
2.2.5 Approximation Capabilities of Feedforward networks and SLFNs....30
2.3 Support Vector Machine................................................................................34
CHAPTER III. TRAINING ALGORITMS FOR SINGLE HIDDEN
LAYER FEEDFORWARD NEURAL NETWORKS ...........................................43
3.1 Single Hidden Layer Feedforward Neural Networks....................................43
3.2 Extreme Learning Machine (ELM)...............................................................45
3.3 Evolutionary Extreme Learning Machine (E-ELM).....................................49
3.4 Least-Squares Extreme Learning Machine ...................................................51
3.4.1 Least-Squares Extreme Learning Machine (LS-ELM) .......................51
3.4.2 Online Training with LS-ELM ............................................................54
3.5 Regularized Least-Squares Extreme Learning Machine (RLS-ELM)..........59
3.6 Evolutionary Least-Squares Extreme Learning Machine (ELS-ELM).........61
CHAPTER IV. OUTLIER DETECTION AND ELIMINATION .......................64
4.1 Distance-based outlier detection ...................................................................64
4.2 Density-based local outlier detection............................................................66
4.3 The Chebyshev outlier detection...................................................................68
4.4 Area-descent-based outlier detection ............................................................69
4.5 Two-stage area-descent outlier detection ......................................................72
4.6 ELM-based outlier Detection and Elimination .............................................74
CHAPTER V. HEMATOCRIT ESTIMATION FROM TRANSDUCED
CURRENT CURVE.................................................................................................78
ii
5.1 Review of Hematocrit and Previous Measurement Methods........................79
5.1.1 Typical Methods for Measuring Hematocrit .......................................79
5.1.2 Hematocrit Determination from Impedance........................................80
5.1.3 Hematocrit Measurement by Dielectric Spectroscopy........................82
5.2 Hematocrit Estimation from Transduced Current Curve ..............................83
5.2.1 Transduced Current Curve from Electrochemical Biosensor for
Glucose Measurement ..................................................................................84
5.2.2 Linear Models for Hematocrit Estimation...........................................86
5.2.3 Neural Network for Hematocrit Estimation ........................................90
5.2.4 Hematocrit Estimation by Using Support Vector Machine .................91
CHAPTER VI. ERROR CORRECTION FOR GLUCOSE BY REDUCING
EFFECTS OF HEMATOCRIT..............................................................................92
6.1 Effects of Hematocrit on Glucose Measurement ..........................................92
6.2 Error Correction for Glucose Measured by a Handheld Device ...................95
6.3 Error Correction for Glucose Computed Using a Single Transduced
Current Point .......................................................................................................99
CHAPTER VII. DIRECT ESTIMATION FOR GLUCOSE DENSITY
FROM TRANSDUCED CURRENT CURVE.......................................................107
7.1 Effects of Critical Care Variables..................................................................107
7.2 Glucose Estimation from the Transduced Current Curve .............................109
CHAPTER VIII. EXPERIMENTAL RESULTS ..................................................114
8.1 Experimental Results for Hematocrit Estimation .........................................115
8.2 Experimental Results for Glucose Correction...............................................119
8.2.1 Error Correction for Glucose Measured by the Handheld Device ......120
iii
8.2.2 Error Correction for Glucose Computed Using a Single
Transduced Current Point.............................................................................125
8.3 Experimental Results for Direct Estimation for Glucose from the
Transduced Current Curve ..................................................................................127
CHAPTER IX. CONCLUSIONS AND FUTURE WORKS................................130
9.1 Conclusions...................................................................................................130
9.2 Future Works.................................................................................................133
9.2.1 Feature Selection .................................................................................133
9.2.2 Optical Biosensors...............................................................................133
9.2.3 Reducing Effects of Other Factors ......................................................134
9.2.4 Applying Improvements of ELM in Medical Diagnosis.....................134
REFERENCES.........................................................................................................135
ACKNOWLEDGMENTS.......................................................................................148
CURRICULUM VITAE..........................................................................................150
iv
LIST OF FIGURES
Figure ......................................................................................................................Page
Figure 1.1 Overview of the proposed systems: (a) Error correction for glucose
values by reducing the effects of hematocrit. (b) Glucose estimation
from transduced current curve .......................................................................4
Figure 1.2 The transduced current curve. The first eight seconds may be
incubation time which waits for chemical reaction. ......................................5
Figure 2.1 A typical feedforward neural network......................................................24
Figure 2.2 Loss functions can be used in SVR, in which ε-insensitive loss
function allows obtaining a sparse set of support vectors .............................35
Figure 2.3 Soft margin loss setting corresponds for a linear SV machine.................37
Figure 3.1 The architecture of single hidden layer feedforward neural network
(SLFN)...........................................................................................................44
Figure 4.1 A simple 2D dataset contains points belonging to two clusters C1
and C2. C1 forms a denser cluster than C2. Two additional points o1 and
o2 can be considered as outliers.....................................................................65
Figure 4.2 Detecting outliers by the area descent method.........................................70
Figure 4.3 A simple dataset with closed outliers o1 and o2. These outliers
cannot be detected by area-descent based method.........................................71
Figure 5.1 An example of anodic current curve corresponding to the first 14s.
v
The first 8 seconds may be incubation time, which waits for chemical
reaction...........................................................................................................84
Figure 5.2 Transduced anodic current points used in estimation of hematocrit.
They are obtained by sampling the second part of current curve at
frequency of 10Hz. ........................................................................................85
Figure 5.3 Current measurements at the time instants. They seem to be an
exponential function of time..........................................................................87
Figure 5.4 Hematocrit estimation by using LRCP approach. Current curve
together with its two extra features are the input of linear model. ................89
Figure 5.5 Hematocrit estimation using the neural network model. Input
features are current points sampled from the transduced current curve
with/without extra features. ...........................................................................91
Figure 6.1 Effects of Hematocrit on Glucose Measurement: (a) same measured
value on current curve but different glucose value, (b) different
measured value on current curve but same glucose value.............................93
Figure 6.2 Plot of the paired-differences of glucose measurements by portable
device minus the primary reference glucose measurements as function
of hematocrit [5]. ...........................................................................................94
Figure 6.3 Glucose correction process. Finding a mapping from t
m to t
c
so that
dependency of hematocrit is reduced and errors are also reduced. ...............95
Figure 6.4 An illustration of glucose correction of handheld devices. ......................97
vi
Figure 6.5 An illustration of glucose correction measured from a single point
on the transduced current curve.....................................................................100
Figure 6.6 Plot of the primary reference glucose against current point x57. We
can diagnose that there would be a linear relationship between the
primary reference glucose and current-point xk.............................................101
Figure 7.1 Effects of PO2 on glucose measurement by handheld devices [5].
The glucose is underestimated at higher levels of PO2. .................................108
Figure 7.2 Effects of PCO2 on glucose measurement by handheld devices [5].
The measured glucose is underestimated at the higher levels of PCO2..........108
Figure 7.3 Effects of pH on glucose measurement by handheld devices [5].............109
Figure 7.4 Illustration of estimating glucose from the transduced current curve.
Glucose values are estimated directly from multiple current points,
which include changing information of the transduced current curve...........110
Figure 7.5 SLFNs for estimating glucose. Input features are current points
sampled from the transduced current curve...................................................111
Figure 8.1 Distribution of collected hematocrit. This distribution is fairly
representing the general trend of hematocrit values for human.....................114
Figure 8.2 Distribution of glucose collected from YSI 2300.....................................119
Figure 8.3 Plot of paired-differences of glucose measurements by handheld
device minus the YSI2300 glucose measurements. The dependency of
hematocrit on residuals is significant.............................................................120
vii
Figure 8.4 The paired-differences of a testing set corresponding to glucose
measurements by handheld device without error correction. The
dependency of hematocrit on residuals is significant. ...................................122
Figure 8.5 The paired-differences of a testing set corresponding to glucose
measurements by handheld device after error correction. The
dependency of hematocrit on residuals is reduced significantly....................122
Figure 8.6 Comparison of glucose results from handheld meter and the
primary reference instrument, YSI 2300: (a) before error correction
and (b) after error correction..........................................................................124
Figure 8.7 The plot of paired-differences of estimated glucose on the test set
minus the YSI 2300 glucose measurements with respect to the
hematocrit density. The dependency of hematocrit on residuals is
almost removed..............................................................................................127
Figure 8.8 The comparison of glucose value between the neural network and
the primary reference instrument corresponding to criterion of
±15mg/dL for glucose levels ≤100 mg/dL and ±15% for glucose levels
> 100 mg/dL...................................................................................................129
viii
LIST OF TABLES
Table ..................................................................................................................Page
Table 4.1 Symbols and Notations ...........................................................................69
Table 6.1 Correlation coefficients between the current points and the primary
reference glucose ........................................................................................102
Table 6.2 Correlation test for normality corresponding to time points...................104
Table 8.1 Root mean square errors (RMSE) compared to the reference
hematocrit measurements ...........................................................................116
Table 8.2 Mean percentage error (MPE) compared to the reference hematocrit
measurement ...............................................................................................118
Table 8.3 Comparison results for different criteria of error tolerance ....................123
Table 8.4 Comparison results on different criteria of error tolerance.....................126
Table 8.5 Comparison results on RMSE of approaches .........................................126
Table 8.6 Comparison results for different criteria of error tolerance ....................128
ix
LIST OF ABBREVIATIONS
Abbr. Description
BLUE Best linear unbiased estimator
Bmse Bayesian mean square error
BP Backpropagation
C(Rp
) Set of all continuous functions defined in the extended Rp
DE Differential evolution
E-ELM Evolutionary extreme learning machine
ELM Extreme learning machine
ELS-ELM Evolutionary least squares extreme learning machine
HCT Hematocrit
KKT Karush-Kuhn-Tucker condition
LMMSE Linear minimum mean square error
LRCP Linear model with Reduced Current Points
LS Least squares
LS-ELM Least squares extreme learning machine
LWCP Linear model with Whole Current Points
MCV Mean corpuscular volume
MLE Maximum likelihood estimator
MMSE Minimum mean square error
MP Moore-Penrose generalized inverse
MPE Mean percentage error
MSE Mean square error
x