Thư viện tri thức trực tuyến
Kho tài liệu với 50,000+ tài liệu học thuật
© 2023 Siêu thị PDF - Kho tài liệu học thuật hàng đầu Việt Nam

Linear Algebra Done Right
Nội dung xem thử
Mô tả chi tiết
Undergraduate Texts in Mathematics
Linear Algebra
Done Right
Sheldon Axler
Third Edition
Undergraduate Texts in Mathematics
Undergraduate Texts in Mathematics
Series Editors:
Sheldon Axler
San Francisco State University, San Francisco, CA, USA
Kenneth Ribet
University of California, Berkeley, CA, USA
Advisory Board:
Colin Adams, Williams College, Williamstown, MA, USA
Alejandro Adem, University of British Columbia, Vancouver, BC, Canada
Ruth Charney, Brandeis University, Waltham, MA, USA
Irene M. Gamba, The University of Texas at Austin, Austin, TX, USA
Roger E. Howe, Yale University, New Haven, CT, USA
David Jerison, Massachusetts Institute of Technology, Cambridge, MA, USA
Jeffrey C. Lagarias, University of Michigan, Ann Arbor, MI, USA
Jill Pipher, Brown University, Providence, RI, USA
Fadil Santosa, University of Minnesota, Minneapolis, MN, USA
Amie Wilkinson, University of Chicago, Chicago, IL, USA
Undergraduate Texts in Mathematics are generally aimed at third- and fourthyear undergraduate mathematics students at North American universities. These
texts strive to provide students and teachers with new perspectives and novel
approaches. The books include motivation that guides the reader to an appreciation
of interrelations among different aspects of the subject. They feature examples that
illustrate key concepts as well as exercises that strengthen understanding.
http://www.springer.com/series/666
For further volumes:
Sheldon Axler
Linear Algebra Done Right
Third edition
123
ISSN 0172-6056 ISSN 2197-5604 (electronic)
ISBN 978-3-319-11079-0 ISBN 978-3-319-11080-6 (eBook)
DOI 10.1007/978-3-319-11080-6
Springer Cham Heidelberg New York Dordrecht London
Library of Congress Control Number: 2014954079
Mathematics Subject Classification (2010): 15-01, 15A03, 15A04, 15A15, 15A18, 15A21
c Springer International Publishing 2015
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part
of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations,
recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission or
information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar
methodology now known or hereafter developed. Exempted from this legal reservation are brief
excerpts in connection with reviews or scholarly analysis or material supplied specifically for the
purpose of being entered and executed on a computer system, for exclusive use by the purchaser of
the work. Duplication of this publication or parts thereof is permitted only under the provisions of the
Copyright Law of the Publisher’s location, in its current version, and permission for use must always be
obtained from Springer. Permissions for use may be obtained through RightsLink at the Copyright
Clearance Center. Violations are liable to prosecution under the respective Copyright Law.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this
publication does not imply, even in the absence of a specific statement, that such names are exempt
from the relevant protective laws and regulations and therefore free for general use.
While the advice and information in this book are believed to be true and accurate at the date of
publication, neither the authors nor the editors nor the publisher can accept any legal responsibility for
any errors or omissions that may be made. The publisher makes no warranty, express or implied, with
respect to the material contained herein.
Typeset by the author in LaTeX
Printed on acid-free paper
Springer is part of Springer Science+Business Media (www.springer.com)
Sheldon Axler
San Francisco State University
Department of Mathematics
San Francisco, CA, USA
Cover figure: For a statement of Apollonius
exercise in Section 6.A.
’s Identity and its connection to linear algebra, see the last
Contents
Preface for the Instructor xi
Preface for the Student xv
Acknowledgments xvii
1 Vector Spaces 1
1.A Rn and Cn 2
Complex Numbers 2
Lists 5
Fn 6
Digression on Fields 10
Exercises 1.A 11
1.B Definition of Vector Space 12
Exercises 1.B 17
1.C Subspaces 18
Sums of Subspaces 20
Direct Sums 21
Exercises 1.C 24
2 Finite-Dimensional Vector Spaces 27
2.A Span and Linear Independence 28
Linear Combinations and Span 28
Linear Independence 32
Exercises 2.A 37
v
vi Contents
2.B Bases 39
Exercises 2.B 43
2.C Dimension 44
Exercises 2.C 48
3 Linear Maps 51
3.A The Vector Space of Linear Maps 52
Definition and Examples of Linear Maps 52
Algebraic Operations on L.V; W / 55
Exercises 3.A 57
3.B Null Spaces and Ranges 59
Null Space and Injectivity 59
Range and Surjectivity 61
Fundamental Theorem of Linear Maps 63
Exercises 3.B 67
3.C Matrices 70
Representing a Linear Map by a Matrix 70
Addition and Scalar Multiplication of Matrices 72
Matrix Multiplication 74
Exercises 3.C 78
3.D Invertibility and Isomorphic Vector Spaces 80
Invertible Linear Maps 80
Isomorphic Vector Spaces 82
Linear Maps Thought of as Matrix Multiplication 84
Operators 86
Exercises 3.D 88
3.E Products and Quotients of Vector Spaces 91
Products of Vector Spaces 91
Products and Direct Sums 93
Quotients of Vector Spaces 94
Exercises 3.E 98
Contents vii
3.F Duality 101
The Dual Space and the Dual Map 101
The Null Space and Range of the Dual of a Linear Map 104
The Matrix of the Dual of a Linear Map 109
The Rank of a Matrix 111
Exercises 3.F 113
4 Polynomials 117
Complex Conjugate and Absolute Value 118
Uniqueness of Coefficients for Polynomials 120
The Division Algorithm for Polynomials 121
Zeros of Polynomials 122
Factorization of Polynomials over C 123
Factorization of Polynomials over R 126
Exercises 4 129
5 Eigenvalues, Eigenvectors, and Invariant Subspaces 131
5.A Invariant Subspaces 132
Eigenvalues and Eigenvectors 133
Restriction and Quotient Operators 137
Exercises 5.A 138
5.B Eigenvectors and Upper-Triangular Matrices 143
Polynomials Applied to Operators 143
Existence of Eigenvalues 145
Upper-Triangular Matrices 146
Exercises 5.B 153
5.C Eigenspaces and Diagonal Matrices 155
Exercises 5.C 160
6 Inner Product Spaces 163
6.A Inner Products and Norms 164
Inner Products 164
Norms 168
Exercises 6.A 175
viii Contents
6.B Orthonormal Bases 180
Linear Functionals on Inner Product Spaces 187
Exercises 6.B 189
6.C Orthogonal Complements and Minimization Problems 193
Orthogonal Complements 193
Minimization Problems 198
Exercises 6.C 201
7 Operators on Inner Product Spaces 203
7.A Self-Adjoint and Normal Operators 204
Adjoints 204
Self-Adjoint Operators 209
Normal Operators 212
Exercises 7.A 214
7.B The Spectral Theorem 217
The Complex Spectral Theorem 217
The Real Spectral Theorem 219
Exercises 7.B 223
7.C Positive Operators and Isometries 225
Positive Operators 225
Isometries 228
Exercises 7.C 231
7.D Polar Decomposition and Singular Value Decomposition 233
Polar Decomposition 233
Singular Value Decomposition 236
Exercises 7.D 238
8 Operators on Complex Vector Spaces 241
8.A Generalized Eigenvectors and Nilpotent Operators 242
Null Spaces of Powers of an Operator 242
Generalized Eigenvectors 244
Nilpotent Operators 248
Exercises 8.A 249
Contents ix
8.B Decomposition of an Operator 252
Description of Operators on Complex Vector Spaces 252
Multiplicity of an Eigenvalue 254
Block Diagonal Matrices 255
Square Roots 258
Exercises 8.B 259
8.C Characteristic and Minimal Polynomials 261
The Cayley–Hamilton Theorem 261
The Minimal Polynomial 262
Exercises 8.C 267
8.D Jordan Form 270
Exercises 8.D 274
9 Operators on Real Vector Spaces 275
9.A Complexification 276
Complexification of a Vector Space 276
Complexification of an Operator 277
The Minimal Polynomial of the Complexification 279
Eigenvalues of the Complexification 280
Characteristic Polynomial of the Complexification 283
Exercises 9.A 285
9.B Operators on Real Inner Product Spaces 287
Normal Operators on Real Inner Product Spaces 287
Isometries on Real Inner Product Spaces 292
Exercises 9.B 294
10 Trace and Determinant 295
10.A Trace 296
Change of Basis 296
Trace: A Connection Between Operators and Matrices 299
Exercises 10.A 304
x Contents
10.B Determinant 307
Determinant of an Operator 307
Determinant of a Matrix 309
The Sign of the Determinant 320
Volume 323
Exercises 10.B 330
Photo Credits 333
Symbol Index 335
Index 337
Preface for the Instructor
You are about to teach a course that will probably give students their second
exposure to linear algebra. During their first brush with the subject, your
students probably worked with Euclidean spaces and matrices. In contrast,
this course will emphasize abstract vector spaces and linear maps.
The audacious title of this book deserves an explanation. Almost all
linear algebra books use determinants to prove that every linear operator on
a finite-dimensional complex vector space has an eigenvalue. Determinants
are difficult, nonintuitive, and often defined without motivation. To prove the
theorem about existence of eigenvalues on complex vector spaces, most books
must define determinants, prove that a linear map is not invertible if and only
if its determinant equals 0, and then define the characteristic polynomial. This
tortuous (torturous?) path gives students little feeling for why eigenvalues
exist.
In contrast, the simple determinant-free proofs presented here (for example,
see 5.21) offer more insight. Once determinants have been banished to the
end of the book, a new route opens to the main goal of linear algebra—
understanding the structure of linear operators.
This book starts at the beginning of the subject, with no prerequisites
other than the usual demand for suitable mathematical maturity. Even if your
students have already seen some of the material in the first few chapters, they
may be unaccustomed to working exercises of the type presented here, most
of which require an understanding of proofs.
Here is a chapter-by-chapter summary of the highlights of the book:
Chapter 1: Vector spaces are defined in this chapter, and their basic properties are developed.
Chapter 2: Linear independence, span, basis, and dimension are defined in
this chapter, which presents the basic theory of finite-dimensional vector
spaces.
xi
xii Preface for the Instructor
Chapter 3: Linear maps are introduced in this chapter. The key result here
is the Fundamental Theorem of Linear Maps (3.22): if T is a linear map
on V, then dim V D dim null T C dim range T. Quotient spaces and duality
are topics in this chapter at a higher level of abstraction than other parts
of the book; these topics can be skipped without running into problems
elsewhere in the book.
Chapter 4: The part of the theory of polynomials that will be needed
to understand linear operators is presented in this chapter. This chapter
contains no linear algebra. It can be covered quickly, especially if your
students are already familiar with these results.
Chapter 5: The idea of studying a linear operator by restricting it to small
subspaces leads to eigenvectors in the early part of this chapter. The
highlight of this chapter is a simple proof that on complex vector spaces,
eigenvalues always exist. This result is then used to show that each linear
operator on a complex vector space has an upper-triangular matrix with
respect to some basis. All this is done without defining determinants or
characteristic polynomials!
Chapter 6: Inner product spaces are defined in this chapter, and their basic
properties are developed along with standard tools such as orthonormal
bases and the Gram–Schmidt Procedure. This chapter also shows how
orthogonal projections can be used to solve certain minimization problems.
Chapter 7: The Spectral Theorem, which characterizes the linear operators
for which there exists an orthonormal basis consisting of eigenvectors,
is the highlight of this chapter. The work in earlier chapters pays off
here with especially simple proofs. This chapter also deals with positive
operators, isometries, the Polar Decomposition, and the Singular Value
Decomposition.
Chapter 8: Minimal polynomials, characteristic polynomials, and generalized eigenvectors are introduced in this chapter. The main achievement
of this chapter is the description of a linear operator on a complex vector
space in terms of its generalized eigenvectors. This description enables
one to prove many of the results usually proved using Jordan Form. For
example, these tools are used to prove that every invertible linear operator
on a complex vector space has a square root. The chapter concludes with a
proof that every linear operator on a complex vector space can be put into
Jordan Form.
Preface for the Instructor xiii
Chapter 9: Linear operators on real vector spaces occupy center stage in
this chapter. Here the main technique is complexification, which is a natural
extension of an operator on a real vector space to an operator on a complex
vector space. Complexification allows our results about complex vector
spaces to be transferred easily to real vector spaces. For example, this
technique is used to show that every linear operator on a real vector space
has an invariant subspace of dimension 1 or 2. As another example, we
show that that every linear operator on an odd-dimensional real vector space
has an eigenvalue.
Chapter 10: The trace and determinant (on complex vector spaces) are
defined in this chapter as the sum of the eigenvalues and the product of the
eigenvalues, both counting multiplicity. These easy-to-remember definitions would not be possible with the traditional approach to eigenvalues,
because the traditional method uses determinants to prove that sufficient
eigenvalues exist. The standard theorems about determinants now become
much clearer. The Polar Decomposition and the Real Spectral Theorem are
used to derive the change of variables formula for multivariable integrals in
a fashion that makes the appearance of the determinant there seem natural.
This book usually develops linear algebra simultaneously for real and
complex vector spaces by letting F denote either the real or the complex
numbers. If you and your students prefer to think of F as an arbitrary field,
then see the comments at the end of Section 1.A. I prefer avoiding arbitrary
fields at this level because they introduce extra abstraction without leading
to any new linear algebra. Also, students are more comfortable thinking
of polynomials as functions instead of the more formal objects needed for
polynomials with coefficients in finite fields. Finally, even if the beginning
part of the theory were developed with arbitrary fields, inner product spaces
would push consideration back to just real and complex vector spaces.
You probably cannot cover everything in this book in one semester. Going
through the first eight chapters is a good goal for a one-semester course. If
you must reach Chapter 10, then consider covering Chapters 4 and 9 in fifteen
minutes each, as well as skipping the material on quotient spaces and duality
in Chapter 3.
A goal more important than teaching any particular theorem is to develop in
students the ability to understand and manipulate the objects of linear algebra.
Mathematics can be learned only by doing. Fortunately, linear algebra has
many good homework exercises. When teaching this course, during each
class I usually assign as homework several of the exercises, due the next class.
Going over the homework might take up a third or even half of a typical class.
xiv Preface for the Instructor
Major changes from the previous edition:
This edition contains 561 exercises, including 337 new exercises that were
not in the previous edition. Exercises now appear at the end of each section,
rather than at the end of each chapter.
Many new examples have been added to illustrate the key ideas of linear
algebra.
Beautiful new formatting, including the use of color, creates pages with an
unusually pleasant appearance in both print and electronic versions. As a
visual aid, definitions are in beige boxes and theorems are in blue boxes (in
color versions of the book).
Each theorem now has a descriptive name.
New topics covered in the book include product spaces, quotient spaces,
and duality.
Chapter 9 (Operators on Real Vector Spaces) has been completely rewritten
to take advantage of simplifications via complexification. This approach
allows for more streamlined presentations in Chapters 5 and 7 because
those chapters now focus mostly on complex vector spaces.
Hundreds of improvements have been made throughout the book. For
example, the proof of Jordan Form (Section 8.D) has been simplified.
Please check the website below for additional information about the book. I
may occasionally write new sections on additional topics. These new sections
will be posted on the website. Your suggestions, comments, and corrections
are most welcome.
Best wishes for teaching a successful linear algebra class!
Sheldon Axler
Mathematics Department
San Francisco State University
San Francisco, CA 94132, USA
website: linear.axler.net
e-mail: linear@axler.net
Twitter: @AxlerLinear