Thư viện tri thức trực tuyến
Kho tài liệu với 50,000+ tài liệu học thuật
© 2023 Siêu thị PDF - Kho tài liệu học thuật hàng đầu Việt Nam

Light - The Physics of the Photon
Nội dung xem thử
Mô tả chi tiết
LIGHT
The Physics of the Photon
Ole Keller
Aalborg University, Denmark
LIGHT
The Physics of the Photon
Cover image: Courtesy of Esben Hanefelt Kristensen, based on a painting entitled “A Wordless Statement.”
Taylor & Francis
Taylor & Francis Group
6000 Broken Sound Parkway NW, Suite 300
Boca Raton, FL 33487-2742
© 2014 by Taylor & Francis Group, LLC
Taylor & Francis is an Informa business
No claim to original U.S. Government works
Printed on acid-free paper
Version Date: 20140428
International Standard Book Number-13: 978-1-4398-4043-6 (Hardback)
This book contains information obtained from authentic and highly regarded sources. Reasonable efforts have been
made to publish reliable data and information, but the author and publisher cannot assume responsibility for the validity of all materials or the consequences of their use. The authors and publishers have attempted to trace the copyright
holders of all material reproduced in this publication and apologize to copyright holders if permission to publish in this
form has not been obtained. If any copyright material has not been acknowledged please write and let us know so we may
rectify in any future reprint.
Except as permitted under U.S. Copyright Law, no part of this book may be reprinted, reproduced, transmitted, or utilized in any form by any electronic, mechanical, or other means, now known or hereafter invented, including photocopying, microfilming, and recording, or in any information storage or retrieval system, without written permission from the
publishers.
For permission to photocopy or use material electronically from this work, please access www.copyright.com (http://
www.copyright.com/) or contact the Copyright Clearance Center, Inc. (CCC), 222 Rosewood Drive, Danvers, MA 01923,
978-750-8400. CCC is a not-for-profit organization that provides licenses and registration for a variety of users. For
organizations that have been granted a photocopy license by the CCC, a separate system of payment has been arranged.
Trademark Notice: Product or corporate names may be trademarks or registered trademarks, and are used only for
identification and explanation without intent to infringe.
Visit the Taylor & Francis Web site at
http://www.taylorandfrancis.com
and the CRC Press Web site at
http://www.crcpress.com
In memory of my mother, Cecilie Marie Keller
Contents
Preface xiii
Acknowledgments xix
About the author xxi
I Classical optics in global vacuum 1
1 Heading for photon physics 3
2 Fundamentals of free electromagnetic fields 7
2.1 Maxwell equations and wave equations . . . . . . . . . . . . . . . . . . . . 7
2.2 Transverse and longitudinal vector fields . . . . . . . . . . . . . . . . . . . 8
2.3 Complex analytical signals . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.4 Monochromatic plane-wave expansion of the electromagnetic field . . . . . 13
2.5 Polarization of light . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.5.1 Transformation of base vectors . . . . . . . . . . . . . . . . . . . . . 14
2.5.2 Geometrical picture of polarization states . . . . . . . . . . . . . . . 15
2.6 Wave packets as field modes . . . . . . . . . . . . . . . . . . . . . . . . . . 18
2.7 Conservation of energy, moment of energy, momentum, and angular momentum . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
2.8 Riemann–Silberstein formalism . . . . . . . . . . . . . . . . . . . . . . . . . 22
2.9 Propagation of analytical signal . . . . . . . . . . . . . . . . . . . . . . . . 24
3 Optics in the special theory of relativity 27
3.1 Lorentz transformations and proper time . . . . . . . . . . . . . . . . . . . 27
3.2 Tensors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
3.3 Four-vectors and -tensors . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
3.4 Manifest covariance of the free Maxwell equations . . . . . . . . . . . . . . 33
3.5 Lorentz transformation of the (transverse) electric and magnetic fields. Duality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
3.6 Lorentz transformation of Riemann–Silberstein vectors. Inner-product invariance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
II Light rays and geodesics. Maxwell theory in general
relativity 39
4 The light-particle and wave pictures in classical physics 41
5 Eikonal theory and Fermat’s principle 45
5.1 Remarks on geometrical optics. Inhomogeneous vacuum . . . . . . . . . . . 45
5.2 Eikonal equation. Geometrical wave surfaces and rays . . . . . . . . . . . . 47
5.3 Geodetic line: Fermat’s principle . . . . . . . . . . . . . . . . . . . . . . . . 52
vii
viii Contents
6 Geodesics in general relativity 55
6.1 Metric tensor. Four-dimensional Riemann space . . . . . . . . . . . . . . . 55
6.2 Time-like metric geodesics . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
6.3 The Newtonian limit: Motion in a weak static gravitational field . . . . . . 59
6.4 Null geodesics and “light particles” . . . . . . . . . . . . . . . . . . . . . . 61
6.5 Gravitational redshift. Photon in free fall . . . . . . . . . . . . . . . . . . . 62
7 The space-time of general relativity 67
7.1 Tensor fields . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
7.2 Covariant derivative . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
7.3 Parallel transport . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
7.4 Riemann curvature tensor . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
7.5 Algebraic properties of the Riemann curvature tensor . . . . . . . . . . . . 73
7.6 Einstein field equations in general relativity . . . . . . . . . . . . . . . . . . 74
7.7 Metric compatibility . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
7.8 Geodesic deviation of light rays . . . . . . . . . . . . . . . . . . . . . . . . 76
8 Electromagnetic theory in curved space-time 79
8.1 Vacuum Maxwell equations in general relativity . . . . . . . . . . . . . . . 79
8.2 Covariant curl and divergence in Riemann space . . . . . . . . . . . . . . . 80
8.3 A uniform formulation of electrodynamics in curved and flat space-time . . 81
8.3.1 Maxwell equations with normal derivatives . . . . . . . . . . . . . . 81
8.3.2 Maxwell equations with E, B, D, and H fields . . . . . . . . . . . . 83
8.3.3 Microscopic Maxwell–Lorentz equations in curved space-time . . . . 84
8.3.4 Constitutive relations in curved space-time . . . . . . . . . . . . . . 85
8.3.5 Remarks on the constitutive relations in Minkowskian space . . . . . 87
8.3.6 Permittivity and permeability for static metrics . . . . . . . . . . . . 88
8.4 Permittivity and permeability in expanding universe . . . . . . . . . . . . . 89
8.5 Electrodynamics in potential description. Eikonal theory and null geodesics 91
8.6 Gauge-covariant derivative . . . . . . . . . . . . . . . . . . . . . . . . . . . 95
III Photon wave mechanics 97
9 The elusive light particle 99
10 Wave mechanics based on transverse vector potential 105
10.1 Gauge transformation. Covariant and noncovariant gauges . . . . . . . . . 105
10.2 Tentative wave function and wave equation for transverse photons . . . . . 107
10.3 Transverse photon as a spin-1 particle . . . . . . . . . . . . . . . . . . . . . 110
10.4 Neutrino wave mechanics. Massive eigenstate neutrinos . . . . . . . . . . . 113
11 Longitudinal and scalar photons. Gauge and near-field light quanta 119
11.1 L- and S-photons. Wave equations . . . . . . . . . . . . . . . . . . . . . . . 119
11.2 L- and S-photon neutralization in free space . . . . . . . . . . . . . . . . . 120
11.3 NF- and G-photons . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122
11.4 Gauge transformation within the Lorenz gauge . . . . . . . . . . . . . . . . 124
Contents ix
12 Massive photon field 127
12.1 Proca equation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127
12.2 Dynamical equations for E and A . . . . . . . . . . . . . . . . . . . . . . . 129
12.3 Diamagnetic interaction: Transverse photon mass . . . . . . . . . . . . . . 130
12.4 Massive vector boson (photon) field . . . . . . . . . . . . . . . . . . . . . . 132
12.5 Massive photon propagator . . . . . . . . . . . . . . . . . . . . . . . . . . . 136
13 Photon energy wave function formalism 143
13.1 The Oppenheimer light quantum theory . . . . . . . . . . . . . . . . . . . . 143
13.2 Interlude: From spherical to Cartesian representation . . . . . . . . . . . . 146
13.3 Photons and antiphotons: Bispinor wave functions . . . . . . . . . . . . . . 150
13.4 Four-momentum and spin of photon wave packet . . . . . . . . . . . . . . . 153
13.5 Relativistic scalar product. Lorentz-invariant integration on the
energy shell . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155
IV Single-photon quantum optics in Minkowskian space 159
14 The photon of the quantized electromagnetic field 161
15 Polychromatic photons 165
15.1 Canonical quantization of the transverse electromagnetic field . . . . . . . 165
15.2 Energy, momentum, and spin operators of the transverse field . . . . . . . 168
15.3 Monochromatic plane-wave photons. Fock states . . . . . . . . . . . . . . . 171
15.4 Single-photon wave packets . . . . . . . . . . . . . . . . . . . . . . . . . . . 173
15.5 New T-photon “mean” position state . . . . . . . . . . . . . . . . . . . . . 177
15.6 T-photon wave function and related dynamical equation . . . . . . . . . . . 179
15.7 The non-orthogonality of T-photon position states . . . . . . . . . . . . . . 181
16 Single-photon wave packet correlations 183
16.1 Wave-packet basis for one-photon states . . . . . . . . . . . . . . . . . . . . 183
16.2 Wave-packet photons related to a given t-matrix . . . . . . . . . . . . . . . 184
16.3 Integral equation for the time evolution operator in the interaction
picture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 186
16.4 Atomic and field correlation matrices . . . . . . . . . . . . . . . . . . . . . 189
16.5 Single-photon correlation matrix: The wave function fingerprint . . . . . . 194
17 Interference phenomena with single-photon states 197
17.1 Wave-packet mode interference . . . . . . . . . . . . . . . . . . . . . . . . . 197
17.2 Young-type double-source interference . . . . . . . . . . . . . . . . . . . . . 198
17.3 Interference between transition amplitudes . . . . . . . . . . . . . . . . . . 201
17.4 Field correlations in photon mean position state . . . . . . . . . . . . . . . 201
17.4.1 Correlation supermatrix . . . . . . . . . . . . . . . . . . . . . . . . . 202
17.4.2 Relation between the correlation supermatrix and the transverse photon propagator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 203
18 Free-field operators: Time evolution and commutation relations 205
18.1 Maxwell operator equations. Quasi-classical states . . . . . . . . . . . . . . 205
18.2 Generalized Landau–Peierls–Sudarshan equations . . . . . . . . . . . . . . 207
18.3 Commutation relations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 208
18.3.1 Commutation relations at different times (τ 6= 0) . . . . . . . . . . . 209
18.3.2 Equal-time commutation relations . . . . . . . . . . . . . . . . . . . 210
x Contents
V Photon embryo states 213
19 Attached photons in rim zones 215
20 Evanescent photon fields 221
20.1 Four-potential description in the Lorenz gauge . . . . . . . . . . . . . . . . 221
20.2 Sheet current density: T-, L-, and S-parts . . . . . . . . . . . . . . . . . . . 223
20.3 Evanescent T-, L-, and S-potentials . . . . . . . . . . . . . . . . . . . . . . 225
20.4 Four-potential photon wave mechanics . . . . . . . . . . . . . . . . . . . . . 229
20.5 Field-quantized approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . 231
20.6 Near-field photon: Heisenberg equation of motion and coherent state . . . . 234
21 Photon tunneling 237
21.1 Near-field interaction. The photon measurement problem . . . . . . . . . . 237
21.2 Scattering of a wave-packet band from a single current-density sheet . . . . 238
21.3 Incident fields generating evanescent tunneling potentials . . . . . . . . . . 243
21.4 Interlude: Scalar propagator in various domains . . . . . . . . . . . . . . . 246
21.5 Incident polychromatic single-photon state . . . . . . . . . . . . . . . . . . 247
21.6 Photon tunneling-coupled sheets . . . . . . . . . . . . . . . . . . . . . . . . 250
22 Near-field photon emission in 3D 255
22.1 T-, L-, and S-potentials of a classical point-particle . . . . . . . . . . . . . 255
22.1.1 General considerations on source fields . . . . . . . . . . . . . . . . . 255
22.1.2 Point-particle potentials . . . . . . . . . . . . . . . . . . . . . . . . . 257
22.2 Cerenkov shock wave . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 260 ˘
22.2.1 Four-potential of point-particle in uniform motion in vacuum . . . . 260
22.2.2 Transverse and longitudinal response theory in matter . . . . . . . . 263
22.2.3 The transverse Cerenkov phenomenon . . . . . . . . . . . . . . . . . 266 ˘
22.2.4 Momenta associated to the transverse and longitudinal parts of the
Cerenkov field . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 269 ˘
22.2.5 Screened canonical particle momentum . . . . . . . . . . . . . . . . . 272
VI Photon source domain and propagators 275
23 Super-confined T-photon sources 277
24 Transverse current density in nonrelativistic quantum mechanics 283
24.1 Single-particle transition current density . . . . . . . . . . . . . . . . . . . 283
24.2 The hydrogen 1s ⇔ 2pz transition . . . . . . . . . . . . . . . . . . . . . . . 286
24.3 Breathing mode: Hydrogen 1s ⇔ 2s transition . . . . . . . . . . . . . . . . 289
24.4 Two-level breathing mode dynamics . . . . . . . . . . . . . . . . . . . . . . 292
25 Spin-1/2 current density in relativistic quantum mechanics 297
25.1 Dirac matrices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 297
25.2 Covariant form of the Dirac equation. Minimal coupling. Four-current density 299
25.3 Gordon decomposition of the Dirac four-current density . . . . . . . . . . . 301
25.4 Weakly relativistic spin current density . . . . . . . . . . . . . . . . . . . . 303
25.5 Continuity equations for spin and space four-current densities . . . . . . . 306
Contents xi
26 Massless photon propagators 309
26.1 From the Huygens propagator to the transverse photon propagator . . . . 309
26.2 T-photon time-ordered correlation of events . . . . . . . . . . . . . . . . . . 311
26.3 Covariant correlation matrix . . . . . . . . . . . . . . . . . . . . . . . . . . 313
26.4 Covariant quantization of the electromagnetic field: A brief review . . . . . 314
26.5 The Feynman photon propagator . . . . . . . . . . . . . . . . . . . . . . . 316
26.6 Longitudinal and scalar photon propagators . . . . . . . . . . . . . . . . . 318
VII Photon vacuum and quanta in Minkowskian space 321
27 Photons and observers 323
28 The inertial class of observers: Photon vacuum and quanta 329
28.1 Transverse photon four-current density . . . . . . . . . . . . . . . . . . . . 329
28.2 Boosts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 332
28.2.1 Lorentz and Lorenz-gauge transformations of the four-potential . . . 332
28.2.2 Plane-mode decomposition of the covariant potential . . . . . . . . . 333
28.2.3 Mode functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 336
28.3 Physical (T-photon) vacuum . . . . . . . . . . . . . . . . . . . . . . . . . . 337
29 The non-inertial class of observers: The nebulous particle concept 345
29.1 Bogolubov transformation. Vacuum states . . . . . . . . . . . . . . . . . . 345
29.2 The non-unique vacuum . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 348
29.3 The Unruh effect . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 352
29.3.1 Rindler space and observer . . . . . . . . . . . . . . . . . . . . . . . 352
29.3.2 Rindler particles in Minkowski vacuum . . . . . . . . . . . . . . . . . 354
30 Photon mass and hidden gauge invariance 363
30.1 Physical vacuum: Spontaneous symmetry breaking . . . . . . . . . . . . . . 363
30.2 Goldstone bosons . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 366
30.3 The U(1) Higgs model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 368
30.4 Photon mass and vacuum screening current . . . . . . . . . . . . . . . . . . 372
30.5 ’t Hooft gauge and propagator . . . . . . . . . . . . . . . . . . . . . . . . . 373
VIII Two-photon entanglement in space-time 377
31 The quantal photon gas 379
32 Quantum measurements 385
32.1 Tensor product space (discrete case) . . . . . . . . . . . . . . . . . . . . . . 385
32.2 Definition of an observable (discrete case) . . . . . . . . . . . . . . . . . . . 386
32.3 Reduction of the wave packet (discrete case) . . . . . . . . . . . . . . . . . 387
32.4 Measurements on only one part of a two-part physical system . . . . . . . 387
32.5 Entangled photon polarization states . . . . . . . . . . . . . . . . . . . . . 390
33 Two-photon wave mechanics and correlation matrices 393
33.1 Two-photon two times wave function . . . . . . . . . . . . . . . . . . . . . 393
33.2 Two-photon Schr¨odinger equation in direct space . . . . . . . . . . . . . . 396
33.3 Two-photon wave packet correlations . . . . . . . . . . . . . . . . . . . . . 397
33.3.1 First-order correlation matrix . . . . . . . . . . . . . . . . . . . . . . 397
33.3.2 Second-order correlation matrix . . . . . . . . . . . . . . . . . . . . . 399
xii Contents
34 Spontaneous one- and two-photon emissions 401
34.1 Two-level atom: Weisskopf–Wigner theory of spontaneous emission . . . . 401
34.1.1 Atom-field Hamiltonian in the electric-dipole approximation. RWAmodel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 401
34.1.2 Weisskopf–Wigner state vector . . . . . . . . . . . . . . . . . . . . . 406
34.2 Two-level atom: Wave function of spontaneously emitted photon . . . . . . 409
34.2.1 Photon wave function in q-space . . . . . . . . . . . . . . . . . . . . 409
34.2.2 The general photon wave function in r-space . . . . . . . . . . . . . 410
34.2.3 Genuine transverse photon wave function . . . . . . . . . . . . . . . 411
34.2.4 Spontaneous photon emission in the atomic rim zone . . . . . . . . . 413
34.3 Three-level atom: Spontaneous cascade emission . . . . . . . . . . . . . . . 417
34.3.1 Two-photon state vector . . . . . . . . . . . . . . . . . . . . . . . . . 417
34.3.2 Two-photon two-times wave function . . . . . . . . . . . . . . . . . . 420
34.3.3 The structure of Φ2,T (r1, r2, t1, t2) . . . . . . . . . . . . . . . . . . . 422
34.3.4 Far-field part of Φ
(1)
2,T (r1, r2, t1, t2) . . . . . . . . . . . . . . . . . . . 425
Bibliography 429
Index 441
Preface
I have often been asked what is a photon? In order to attempt to answer this question,
as communicating human beings, above all we must learn how to use the word is in an
unambiguous manner. The learning process takes us on a journey into deep philosophical
questions, and many of us end up being bewildered before we finally are snowed under
with philosophical thinking. In my understanding, the is-problem is like a Gordian knot.
In physics we replace the word is by characterizes, although in everyday discussion among
physicists we do not need to distinguish between is and characterizes, in general. So, I take
the liberty to replace the original question with what characterizes a photon? If someone asks
you who is this person you will “only” be able to answer by mentioning as many features,
traits, etc., as you are aware of about the given person. In a sense, a good characterization
of a phenomenon in physics means to look at the phenomenon from various perspectives
(through different windows). In the case of the photon, we approach the original question
what is a photon by looking at the phenomenon through as many windows as possible. Only
in the never attainable limit, where the number (N) of windows [photon perspectives (PP)]
approaches infinity, has one captured the photon phenomenon, at least in my understanding.
Mathematically,
Observational possibility ≡
X
N
i=1
(P P)i
⇒
X∞
i=1
(P P)i ≡ The photon phenomenon.
In this book I take a look at the photon phenomenon from a personal selection of a few
perspectives. The insight obtained by looking through some of the windows may already be
familiar to the reader.
Above I have made use of the word phenomenon, and replaced photon with photon
phenomenon. The concept phenomenon was introduced in the physical literature by Niels
Bohr, and the definition he first formulated publicly at a meeting in Warsaw in 1938,
arranged by the International Institute of Intellectual Co-operation of the League of Nations.
Niels Bohr, one of the monumental figures in the establishment of quantum mechanics,
throughout his life, with ever-increasing force of the argument, emphasized that we must
learn to use the words of the common language in an unambiguous manner, because after
all, we as physicists essentially have only the common language when we discuss with
each other what we have learned in our field of study. According to Bohr, no elementary
quantum phenomenon is a phenomenon until it is a registered (observed) phenomenon. For
Bohr quantum mechanics was a rational generalization of classical physics, and his definition
of the phenomenon concept made it possible to unite the seemingly incompatible particle
and wave aspects of the photon phenomenon, e.g., the single- and double-slit experiments
with photons. Bohr’s phenomenon concept, as well as another of his central points, viz.,
that the functioning of the measuring apparatus always must (and only can) be described
in the language of classical physics, will be important for us to remember. To Bohr, every
atomic phenomenon is closed in the sense that its observation is based on registrations
xiii
xiv Light—The Physics of the Photon
obtained by means of suitable macroscopic devices (with irreversible functioning). Bohr
considered the closure of fundamental significance not only in quantum physics but in the
whole description of nature, and he often stressed in discussions that “reality” is a word in
our language and that we must learn to use it correctly. Kalckar, in the 1967 book Niels
Bohr: His Life and Work as Seen by His Friends and Colleagues (edited by S. Rozental)
quoted Bohr for the following statement: I am quite prepared to talk of the spiritual life of
an electronic computer, to say that it is considering or that it is in a bad mood. What really
matters is the unambiguous description of its behaviour, which is what we observe. The
question as to whether the machine really feels, or whether it merely looks as though it did,
is absolutely as meaningless as to ask whether light is “in reality” waves or particles. We
must never forget that “reality” too is a human word just like “wave” or “consciousness.”
Our task is to learn to use these words correctly − that is, unambiguously and consistently.
It will be well to remember the fundamental (central) points of Niels Bohr throughout the
reading of this book.
Notwithstanding the fact that field–matter interaction is needed for a photon to appear
as a photon phenomenon, it is nevertheless indispensable to study the photon as a concept
belonging to global vacuum (matter-free space). Although the photon of the vacuum is an
abstraction of our mind, the photon concept must be firmly connected to the electromagnetic
field concept in free space. The autonomy of the classical electromagnetic field in free space is
solely connected with the vacuum speed of light (c): The classical electromagnetic field is an
intermediary describing the delayed (with speed c) interaction between electrically charged
particles in nonuniform motion. Although there is no room for accommodating the photon
concept in the framework of classical electrodynamics, it is of value to investigate how far
one may proceed toward the introduction of a classical light particle concept in a classical
framework. The autonomy of the electromagnetic field increases in an essential manner with
the introduction of the quantum of action (Planck’s constant, h) in electrodynamics. The
photon concept then flourishes, and the photon-free vacuum appears with its own autonomy.
The modern era of the light particle (based on h) began when Einstein in 1905 concluded
that monochromatic (frequency: ν) radiation of low density (within the range of validity of
Wien’s radiation formula) behaves thermodynamically as though it consisted of a number of
independent energy quanta of magnitude hν.
In Part I, we prepare ourselves for photon physics by studying certain aspects of classical
optics in a global vacuum on the basis of the free-space Maxwell equations. Since the photon
in global vacuum (T-photon) is a transversely (T) polarized object belonging to the positivefrequency part of the electromagnetic spectrum, studies of transverse (longitudinal) vector
fields, complex analytical signals, and the various polarization states of light are central.
With an eye to the point-like Einstein light particle we also describe how the electromagnetic
field can be resolved into a complete set of wave-packet modes. Because the massless photon
necessarily is a relativistic object propagating with the vacuum speed of light, it is important
to consider the fields of classical optics from the perspective of special relativity. Our brief
account of optics in special relativity culminates with a demonstration of the manifest
covariance of the Maxwell equations, and a discussion of the Lorentz transformation of the
transverse and longitudinal parts of the electromagnetic field.
In Part II, we study light rays and geodesics, and we also present a brief account of the
Maxwell theory in general relativity. In the framework of classical electrodynamics there
is no hope for considering light as consisting of some sort of particles, in general. This
is so because (wave) interference effects cannot occur in classical particle dynamics. In a
corner of the classical field theory, known as geometrical optics, the wavelength (λ) of light
plays no role; however, in the short wavelengths limit and here (λ → 0) a geometrization
of the field description in the form of light rays appears. The eikonal equation is the basic
equation of geometrical optics. A classical particle moves along a trajectory, and in the