Siêu thị PDFTải ngay đi em, trời tối mất

Thư viện tri thức trực tuyến

Kho tài liệu với 50,000+ tài liệu học thuật

© 2023 Siêu thị PDF - Kho tài liệu học thuật hàng đầu Việt Nam

Land Cover Classification Using Satellite Images An Approach Based On Tim Series Composites And Ensemble Of Supervised Classifiers
PREMIUM
Số trang
53
Kích thước
3.4 MB
Định dạng
PDF
Lượt xem
1831

Land Cover Classification Using Satellite Images An Approach Based On Tim Series Composites And Ensemble Of Supervised Classifiers

Nội dung xem thử

Mô tả chi tiết

VIETNAM NATIONAL UNIVERSITY, HANOI

UNIVERSITY OF ENGINEERING AND TECHNOLOGY

MAN DUC CHUC

RESEARCH ON LAND-COVER CLASSIFICATION

METHODOLOGIES FOR OPTICAL SATELLITE IMAGES

MASTER THESIS IN COMPUTER SCIENCE

Hanoi – 2017

VIETNAM NATIONAL UNIVERSITY, HANOI

UNIVERSITY OF ENGINEERING AND TECHNOLOGY

MAN DUC CHUC

RESEARCH ON LAND-COVER CLASSIFICATION

METHODOLOGIES FOR OPTICAL SATELLITE IMAGES

DEPARTMENT: COMPUTER SCIENCE

MAJOR: COMPUTER SCIENCE

CODE: 60480101

MASTER THESIS IN COMPUTER SCIENCE

SUPERVISOR: Dr. NGUYEN THI NHAT THANH

Hanoi – 2017

PLEDGE

I hereby undertake that the content of the thesis: “Research on Land￾Cover classification methodologies for optical satellite images” is the research

I have conducted under the supervision of Dr. Nguyen Thi Nhat Thanh. In the

whole content of the dissertation, what is presented is what I learned and

developed from the previous studies. All of the references are legible and legally

quoted.

I am responsible for my assurance.

Hanoi, day month year 2017

Thesis’s author

Man Duc Chuc

ACKNOWLEDGEMENTS

I would like to express my deep gratitude to my supervisor, Dr. Nguyen Thi

Nhat Thanh. She has given me the opportunity to pursue research in my favorite

field. During the dissertation, she has given me valuable suggestions on the

subject, and useful advices so that I could finish my dissertation.

I also sincerely thank the lecturers in the Faculty of Information

Technology, University of Engineering and Technology - Vietnam National

University Hanoi, and FIMO Center for teaching me valuable knowledge and

experience during my research.

Finally, I would like to thank my family, my friends, and those who have

supported and encouraged me.

This work was supported by the Space Technology Program of Vietnam

under Grant VT-UD/06/16-20.

Hanoi, day month year 2017

Man Duc Chuc

1

Content

CHAPTER 1. INTRODUCTION .................................................................................... 5

1.1. Motivation .......................................................................................................... 5

1.2. Objectives, contributions and thesis structure ................................................... 9

CHAPTER 2. THEORETICAL BACKGROUND ....................................................... 10

2.1. Remote sensing concepts ................................................................................. 10

2.1.1. General introduction .............................................................................. 10

2.1.2. Classification of remote sensing systems .............................................. 12

2.1.3. Typical spectrum used in remote sensing systems ................................ 14

2.2. Satellite images ................................................................................................ 15

2.2.1. Introduction ............................................................................................ 15

2.2.2. Landsat 8 images ................................................................................... 17

2.3. Compositing methods ...................................................................................... 20

2.4. Machine learning methods in land cover study ............................................... 21

2.4.1. Logistic Regression................................................................................ 21

2.4.2. Support Vector Machine ........................................................................ 22

2.4.3. Artificial Neural Network ...................................................................... 23

2.4.4. eXtreme Gradient Boosting ................................................................... 25

2.4.5. Ensemble methods ................................................................................. 25

2.4.6. Other promising methods ...................................................................... 26

CHAPTER 3. PROPOSED LAND COVER CLASSIFICATION METHOD ............. 27

3.1. Study area ......................................................................................................... 27

3.2. Data collection ................................................................................................. 28

3.2.1. Reference data ........................................................................................ 28

Tải ngay đi em, còn do dự, trời tối mất!