Thư viện tri thức trực tuyến
Kho tài liệu với 50,000+ tài liệu học thuật
© 2023 Siêu thị PDF - Kho tài liệu học thuật hàng đầu Việt Nam

Introduction to Thermodynamics and Statistical Physics phần 8 ppt
Nội dung xem thử
Mô tả chi tiết
Chapter 3. Bosonic and Fermionic Systems
√ε
2
µ β
α2
¶3/2
dε = n2dn .
Thus, by introducing the density of states
D (ε) = ( V
2π2
¡ 2m
~2
¢3/2
ε1/2 ε ≥ 0
0 ε < 0 , (3.97)
one has
log Zgc = 1
2
X
l
Z∞
−∞
dε D (ε) log (1 + λ exp (−β (ε + El))) . (3.98)
3.3.3 Energy and Number of Particles
Using Eqs. (1.80) and (1.94) for the energy U and the number of particles
N, namely using
U = −
µ∂ log Zgc
∂β ¶
η
, (3.99)
N = λ∂ log Zgc
∂λ , (3.100)
one finds that
U = 1
2
X
l
Z∞
−∞
dε D (ε) (ε + El) fFD (ε + El) , (3.101)
N = 1
2
X
l
Z∞
−∞
dε D (ε) fFD (ε + El) , (3.102)
where fFD is the Fermi-Dirac distribution function [see Eq. (2.35)]
fFD () = 1
exp [β ( − µ)] + 1 . (3.103)
3.3.4 Example: Electrons in Metal
Electrons are Fermions having spin 1/2. The spin degree of freedom gives rise
to two orthogonal eigenstates having energies E+ and E− respectively. In the
absent of any external magnetic field these states are degenerate, namely
E+ = E−. For simplicity we take E+ = E− = 0. Thus, Eqs. (3.101) and
(3.102) become
Eyal Buks Thermodynamics and Statistical Physics 112