Siêu thị PDFTải ngay đi em, trời tối mất

Thư viện tri thức trực tuyến

Kho tài liệu với 50,000+ tài liệu học thuật

© 2023 Siêu thị PDF - Kho tài liệu học thuật hàng đầu Việt Nam

Introduction to multi-marginal optimal transport on sub-riemannian manifold :Hội nghị khoa học trẻ lần 4
MIỄN PHÍ
Số trang
9
Kích thước
407.5 KB
Định dạng
PDF
Lượt xem
1980

Tài liệu đang bị lỗi

File tài liệu này hiện đang bị hỏng, chúng tôi đang cố gắng khắc phục.

Introduction to multi-marginal optimal transport on sub-riemannian manifold :Hội nghị khoa học trẻ lần 4

Nội dung xem thử

Mô tả chi tiết

Hội nghị Khoa học trẻ lần 4 năm 2022 (YSC2022) – IUH

Ngày 14/10/2022 ISBN: 978-604-920-155-4

© 2022 Trường Đại học Công nghiệp Thành phố Hồ Chí Minh 351

YSC4F.231

INTRODUCTION TO MULTI-MARGINAL OPTIMAL TRANSPORT ON SUB￾RIEMANNIAN MANIFOLD

THANH SON TRINH

Faculty of Information Technology, Industrial University of Ho Chi Minh City

[email protected]

Abstract. In this paper, we introduce the multi-marginal optimal transport on sub-Riemannian manifold

to minimize the total cost, which is defined to be the sum of the squared sub-Riemannian distances. As the

works of Kim and Pass on Riemannian manifold [13]; and Pass, Pinamonti and Vedovato on Heisenberg

group [16], we give a Kantorovich dual formula and prove the existence of a solution to our problem under

structure of sub-Riemannian manifold.

Keywords. Multi-marginal, Kantorovich duality, Sub-Rieamannian manifold.

1. INTRODUCTION

In 2010s, the theory of classical optimal transport problems was developed by many authors

[4,5,6,7,9,19,20,21]. It has many applications in economics, image processing, PDEs, probability and

statistics, and logarithmic Sobolev inequalities. For more details, readers can see [3,7,8,15,17,18,19]. The

primal optimal transport problem was introduced by Kantorovich in 1940s [9,10]. This problem is presented

in the form

 

 

1 2 1 2

1 2 1 2

,

inf ( , ) , ,

X X

c x x d x x

  

 

where

1

and

2 

are Borel probability measures on Polish (separable and complete) metric spaces

X1

and

X2

, respectively;

1 2 c X X : ( , ]     is a cost function, and we denote by

 1 2 , 

the set of

all Borel probability measures

 on

X X 1 2 

with the first and the second marginals are

1

and

2  ,

respectively, this means that

     A X A X A A 1 2 1 1 1 2 2 2      ( ), ( )  

,

for every Borel subsets

Ai

of

Xi

, i 1,2 .

In 2015, Kim and Pass have generalized the primal optimal transport problem by introducing and

investigating the multi-marginal optimal transport problem on Riemannian manifolds in paper [13]. Let

1

, ,  k

be

k

Borel probability measures on a manifold

M

, this problem is written in the following

form

 

   

1

1 1

,...,

inf ,..., ,..., k

k

M k k c x x d x x

  

 

,

where

  1

,..., k 

is the set of all Borel probability measures

on

k M M M   

with marginals

1

,...,  k

, this means that

Tải ngay đi em, còn do dự, trời tối mất!