Thư viện tri thức trực tuyến
Kho tài liệu với 50,000+ tài liệu học thuật
© 2023 Siêu thị PDF - Kho tài liệu học thuật hàng đầu Việt Nam

INTERFACIAL AND CONFINED WATER Part 10 doc
Nội dung xem thử
Mô tả chi tiết
278 References
[419] G. Evmenenko, S. Dugan, J. Kmetko, P. Dutta, Molecular ordering
in thin liquid films of polydimethylsiloxanes, Langmuir 17 (2001)
4021–4024.
[420] C. Lee, J. McCammon, P. Rossky, The structure of liquid water at
an extended hydrophobic surface, J. Chem. Phys. 80 (1984) 4448–
4455.
[421] A. Belch, M. Berkowitz, Molecular-dynamics simulations of
TIPS2 water restricted by a spherical hydrophobic boundary,
Chem. Phys. Lett. 113 (1985) 278–282.
[422] J. Valleau, A. Gardner, Water-like particles at surfaces. I. The
uncharged, unpolarized surface, J. Chem. Phys. 86 (1987)
4162–4170.
[423] L. Zhang, H. T. Devis, D. M. Kroll, H. S. White, Moleculardynamics simulations of water in a spherical cavity, J. Phys. Chem.
99 (1995) 2878–2884.
[424] J. C. Shelley, G. N. Patey, Modeling and structure of mercurywater interfaces, J. Chem. Phys. 107 (1997) 2122–2141.
[425] C. H. Bridgeman, N. T. Skipper, A Monte Carlo study of water
at an uncharged clay surface, J. Phys.: Condens. Matt. 9 (1997)
4081–4087.
[426] E. Spohr, K. Heinzinger, Molecular dynamics simulation of a
water metal interface, Chem. Phys. Lett. 123 (1986) 218–221.
[427] I.-C. Yeh, M. Berkowitz, Aqueous solution near charged Ag(111)
surfaces: comparison between a computer simulation and experiment, Chem. Phys. Lett. 301 (1999) 81–86.
[428] I.-C. Yeh, M. Berkowitz, Effects of the polarizability and water
density constraint on the structure of water near charged surfaces:
Molecular dynamics simulations, J. Chem. Phys. 112 (2000)
10491–10495.
References 279
[429] P. Gallo, M. A. Ricci, M. Rovere, Layer analysis of the structure
of water confined in vycor glass, J. Chem. Phys. 116 (2002)
342–346.
[430] J. Puibasset, R. J.-M. Pellenq, Grand canonical Monte Carlo simulation study of water structure on hydrophilic mesoporous and
plane silica substrates, J. Chem. Phys. 119 (2003) 9226–9232.
[431] J. Puibasset, R. J.-M. Pellenq, A comparison of water adsorption
on ordered and disordered silica substrates, Phys. Chem. Chem.
Phys. 6 (2004) 1933–1937.
[432] D. Ferry, A. Glebov, V. Senz, J. Suzanne, J. Toennies, H. Weiss,
The properties of a two-dimensional water layer on MgO(001),
Surf. Sci. 377–379 (1997) 634–638.
[433] K. Jug, G. Geudtner, Quantum chemical study of water adsorption
at the NaCl(100) surface, Surf. Sci. 371 (1997) 95–99.
[434] D. P. Taylor, W. P. Hess, M. I. McCarthy, Structure and energetics of the water/NaCl(100) interface, J. Phys. Chem. 101 (1997)
7455–7463.
[435] A. Marmier, P. Hoang, S. Picaud, C. Girardet, R. M. LyndenBell, A molecular dynamics study of the structure of water layers
adsorbed on MgO(100), J. Chem. Phys. 109 (1998) 3245–3254.
[436] L. Giordano, J. Goniakowski, J. Suzanne, Partial dissociation of
water molecules in the (3 × 2) water monolayer deposited on the
MgO (100) surface, Phys. Rev. Lett. 81 (1998) 1271–1273.
[437] O. Engkvist, A. J. Stone, Adsorption of water on NaCl(001). I.
Intermolecular potentials and low temperature structures, J. Chem.
Phys. 110 (1999) 12089–12096.
[438] M. Odelius, Mixed molecular and dissociative water adsorption
on MgO[100], Phys. Rev. Lett. 82 (1999) 3919–3922.
[439] A. Rahman, F. H. Stillinger, Hydrogen-bond patterns in liquid
water, J. Am. Chem. Soc. 95 (1973) 7943–7948.