Thư viện tri thức trực tuyến
Kho tài liệu với 50,000+ tài liệu học thuật
© 2023 Siêu thị PDF - Kho tài liệu học thuật hàng đầu Việt Nam

Intelligent Environmental Sensing
Nội dung xem thử
Mô tả chi tiết
Smart Sensors, Measurement and Instrumentation 13
Intelligent
Environmental
Sensing
Henry Leung
Subhas Chandra Mukhopadhyay
Editors
Smart Sensors, Measurement
and Instrumentation
Volume 13
Series editor
Subhas Chandra Mukhopadhyay
School of Engineering and Advanced Technology (SEAT)
Massey University (Manawatu)
Palmerston North
New Zealand
E-mail: [email protected]
More information about this series at http://www.springer.com/series/10617
Henry Leung · Subhas Chandra Mukhopadhyay
Editors
Intelligent Environmental
Sensing
ABC
Editors
Henry Leung
Department of Electrical and Computer
Engineering
University of Calgary
Calgary Alberta
Canada
Subhas Chandra Mukhopadhyay
School of Engineering and Advanced Techn.
Massey University (Turitea Campus)
Palmerston North
New Zealand
ISSN 2194-8402 ISSN 2194-8410 (electronic)
Smart Sensors, Measurement and Instrumentation
ISBN 978-3-319-12891-7 ISBN 978-3-319-12892-4 (eBook)
DOI 10.1007/978-3-319-12892-4
Library of Congress Control Number: 2014953596
Springer Cham Heidelberg New York Dordrecht London
c Springer International Publishing Switzerland 2015
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of
the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology
now known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information in this book
are believed to be true and accurate at the date of publication. Neither the publisher nor the authors or
the editors give a warranty, express or implied, with respect to the material contained herein or for any
errors or omissions that may have been made.
Printed on acid-free paper
Springer International Publishing AG Switzerland is part of Springer Science+Business Media
(www.springer.com)
Preface
Environmental issues are always on the policy making agenda and industries have
to manage their environmental impact. Developing environmental sensing and
monitoring technologies become essential especially for industries that may cause
severe contamination to the eco-systems. According to industrial analysts, the
market for environmental sensing and monitoring technologies is projected to
reach US$17 billion by 2020. Currently there are three main approaches to
improve environmental sensing: developing novel environmental sensors,
designing more effective sensing algorithms to enhance detection performance
and using multiple sensors to form environmental sensor networks. These three
approaches are not exclusive but complimentary for an improved environmental
monitoring.
This book is written by experts using one or more of these three approaches of
intelligent environmental sensing in their own applications. The book gives a
snapshot of the current state of the art in environmental sensor technology,
sensory signal processing and wireless sensor networks for environmental
monitoring. It starts with a review of sensing technologies and different
environmental monitoring applications such as greenhouse monitoring, food
quality monitoring, water monitoring and wildlife monitoring. The other ten
chapters are dedicated to current researches on these three approaches to
environmental sensing.
Chapters 2 to 5 describe sensor technologies for environmental monitoring.
Chapter 2 presents a novel millimeter sized sensors called micro motes and their
deployment in situations without radio and Global Positioning System such as
underground oil reservoirs. Chapter 3 considers the volcanic ash monitoring
problem by using the sensor network approach. In particular, a novel low cost
smart multi-sensor node is developed to estimate flow rates, classify
granulometry, and discriminate volcanic ash from other types of sediments.
Chapter 4 reports a special designed sensor for ocean monitoring - a portable high
frequency surface wave radar. With advanced signal processing techniques, this
portable radar system can provide long range monitoring of sea currents, waves
and winds. Chapter 5 reports a motion sensor system to sense the tilt for landslide
monitoring. This system is shown to be able to detect small displacements during
a typhoon event.
Chapters 6 to 8 put more focus on the second approach, that is, advanced
algorithms, in particular, all three chapters consider using sensor fusion to enhance
the sensing performance. Chapter 6 considers the problem of water quality
VI Preface
monitoring by using an intelligent water monitoring system. This system uses
sensor fusion to combine different sensors including camera, Global Positioning
System, temperature sensor, PH sensor, conductivity sensor, dissolved oxygen
sensor, turbidity sensor and a special designed planar electrode sensor for water
quality monitoring. As remote sensing is widely used in environmental sensing,
Chapter 7 presents an effective image fusion approach to combine dissimilar
imagery data. The fuzzy integral is used to perform an optimal fusion and the
method can learn model parameters adaptively by using Kalman filter and
compressed sensing. Chapter 8 considers remote sensing for greenhouse precision
cultivation. The proposed novel system combines RFID, multi-spectral imaging
and plant-oriented sensing algorithm and develops a variable spraying system for
precision irrigation.
Interesting applications and detailed description of the wireless communication
aspects on wireless sensor networks for environmental sensing are presented in
Chapters 9 to 11. Chapter 9 gives a clear description on how to use the IEEE 1451
standard to develop a wireless sensor network for environmental sensing. The
authors use indoor air quality monitoring as a demonstration. Chapter 10 uses
wireless sensor network technology for an industrial monitoring problem. It
considers different wireless standards such as ZigBee, WirelessHART and then
develops a wireless sensor network system to monitor torque, speed and efficiency
of induction motors. Chapter 11 considers a unique monitoring problem – debris
flow. It introduces different types of debris flow monitoring systems in Taiwan
and the performance of the geological monitoring system on providing debris flow
warnings.
We would like to whole-heartedly thank all the authors for their contributions
to this book.
Henry Leung
Subhas Chandra Mukhopadhyay
Contents
1 Sensing Technologies for Intelligent Environments: A Review .......... 1
Hemant Ghayvat, Subhas C. Mukhopadhyay, X. Gui
1.1 Introduction ..................................................................................... 1
1.2 Monitoring of Environments ........................................................... 2
1.2.1 Wireless Systems................................................................. 3
1.2.2 Energy Harvesting and Management .................................. 6
1.2.3 Environmental Monitoring .................................................. 10
1.2.4 Greenhouse Monitoring ....................................................... 10
1.2.5 Food Quality Monitoring .................................................... 12
1.2.6 Monitoring of Wildlife ........................................................ 14
1.2.7 Home and Healthcare .......................................................... 17
1.2.8 Water Monitoring ................................................................ 22
1.3 Conclusions ..................................................................................... 23
References ................................................................................................ 23
2 Micro Motes: A Highly Penetrating Probe for Inaccessible
Environments .......................................................................................... 33
Elena Talnishnikh, J. van Pol, H.J. Wörtche
2.1 Introduction ..................................................................................... 33
2.2 Conceptual Approach ...................................................................... 35
2.2.1 Localization Problem .......................................................... 36
2.2.2 Aspects of Ultrasound Implementation in Micro Motes ..... 38
2.3 Proof of Principle ............................................................................ 39
2.3.1 The Test Site ....................................................................... 40
2.3.2 Prototype Blank Motes ........................................................ 41
2.3.3 The Field Test ..................................................................... 44
2.4 Conceptual Design of a First Generation of Sensor Motes ............. 45
2.5 Conclusive Remarks ........................................................................ 47
References ................................................................................................ 48
VIII Contents
3 A Multi-sensor Smart System for Vulcanic Ash Monitoring ............. 51
B. Andò, S. Baglio, V. Marletta
3.1 Introduction ..................................................................................... 52
3.2 The Multi-sensor Node ................................................................... 55
3.3 The Methodology for Ash Granulometry Classification ................. 57
3.3.1 Modelling and Design of the Ash Granulometry Detection
System ................................................................................. 57
3.3.2 Synthesis and Characterization of the Sensing System ....... 60
3.3.3 ROC Analysis as a Methodology for Ash Granulometry
Classification ....................................................................... 65
3.4 Flow Rate Measurement.................................................................. 68
3.4.1 Design of the Sensing Architecture ..................................... 68
3.4.2 Characterization of the Flow-Rate Sensor ........................... 71
3.5 Volcanic Ash Discrimination .......................................................... 73
3.6 Conclusions ..................................................................................... 75
References ................................................................................................ 76
4 Portable High Frequency Surface Wave Radar OSMAR-S ............... 79
Hao Zhou, Biyang Wen
4.1 Introduction ..................................................................................... 79
4.2 Principle of Sea State Sensing ......................................................... 82
4.2.1 Barrick’s First-Order RCS Equation ................................... 82
4.2.2 Barrick’s Second-Order RCS Equation ............................... 84
4.3 Current Mapping in OSMAR-S ...................................................... 86
4.3.1 Radial Current Mapping ...................................................... 86
4.3.2 Wind Direction Mapping..................................................... 89
4.3.3 Total Current Vector Mapping ............................................ 89
4.4 Wave Height Estiamtion ................................................................. 91
4.4.1 Beamforming and Power Spectral Estimation..................... 91
4.4.1.1 Conventional Beamforming ................................. 91
4.4.1.2 Improved Beamforming ....................................... 92
4.4.2 Wave Extraction .................................................................. 94
4.4.2.1 Locating Second-Order Region ............................ 94
4.4.2.2 Wave Height Estimation ...................................... 95
4.5 Automatic Frequency Selection and RFI Suppression .................... 98
4.5.1 Automatic Frequency Selection (AFS) System ................... 98
4.5.2 RFI Suppression .................................................................. 100
4.6 Results of Field Comparison Experiments ...................................... 101
4.6.1 Hangzhou Bay Experiment ................................................. 101
4.6.2 Shanwei Experiment ........................................................... 104
4.6.3 Taiwan Strait Experiment .................................................... 106
Contents IX
4.7 Conclusion ...................................................................................... 107
References ................................................................................................ 108
5 Using Motion Sensor for Landslide Monitoring and Hazard
Mitigation ................................................................................................ 111
K.-L. Wang, Y.-M. Hsieh, C.-N. Liu, J.-R. Chen, C.-M. Wu, S.-Y. Lin,
H.-Y. Pan
5.1 Introduction ..................................................................................... 112
5.1.1 Location of Study Site ......................................................... 112
5.1.2 Geological Condition .......................................................... 113
5.2 Landslide Numerical Analysis ........................................................ 113
5.3 Tilt Measuring Station ..................................................................... 115
5.3.1 Power Source ...................................................................... 116
5.3.2 GPRS Module ..................................................................... 116
5.3.3 System Board ...................................................................... 116
5.3.4 Triaxial Accelerometer ........................................................ 117
5.4 Information System ......................................................................... 118
5.4.1 Tilt Measuring Station ......................................................... 119
5.4.2 Central Server and Backup Server ...................................... 120
5.4.3 Client Devices ..................................................................... 122
5.5 Landslide Management with Motion Sensor Monitoring
System ............................................................................................. 124
5.6 Conclusion Remarks ....................................................................... 125
References ................................................................................................ 126
6 Distributed Intelligent Monitoring System for Water
Environment ........................................................................................... 129
Yuhao Wang, Junle Zhou, Hongyang Lu, Xiaolei Wang, Henry Leung
6.1 Introduction ..................................................................................... 129
6.2 The Overall Design of the Water Quality Monitoring Terminal ..... 131
6.3 Sensors for Water Quality Detection............................................... 132
6.3.1 IP Camera and the GPS Module .......................................... 133
6.3.2 Sensors of 5 Conventional Parameters of the Water
Quality ................................................................................. 134
6.3.3 Planar Electrode Sensors for Water Detection .................... 137
6.4 Design of the Data Acquisition Board ............................................ 142
6.4.1 The Hardware Design of Data Acquisition
Board ................................................................................... 144
6.4.2 The Software Design of Data Acquisition
Board ................................................................................... 145
6.5 The Distributed Data Wireless Transmission .................................. 146
6.5.1 Mesh Network ...................................................... 148
X Contents
6.5.2 Constitution of NCU-Mesh Hardware System
and Software System ........................................................... 150
6.6 The Experiment Setup and the Performance Testing of the
Water Quality Monitoring Terminal ............................................... 152
6.6.1 The Testing of the Sensor and the Performance Analysis ... 152
6.6.2 The Performance Testing of Data Acquisition
Board ................................................................................... 153
6.6.3 The Testing Results of the NCU-Mesh ............................... 155
6.7 Conclusion ...................................................................................... 156
References ................................................................................................ 157
7 Application to Environmental Surveillance: Dynamic Image
Estimation Fusion and Optimal Remote Sensing with Fuzzy
Integral .................................................................................................... 159
Zhongliang Jing, Han Pan, Gang Xiao
7.1 Introduction to Image Fusion .......................................................... 159
7.1.1 Limitations of Single Sensor System .................................. 160
7.1.2 Advance of Image Fusion.................................................... 160
7.1.3 Related Works ..................................................................... 161
7.1.4 Dynamic Image Estimation Fusion and Optimal Remote
Sensing ................................................................................ 163
7.2 Dynamic Image Estimation Fusion with Kalman Filtered
Compressed Sensing ....................................................................... 164
7.2.1 Kalman Filtered Compressed Sensing................................. 164
7.2.1.1 Some Notations and Assumptions ........................ 164
7.2.1.2 Compressed Sensing ........................................... 164
7.2.1.3 Kalman Filtered Compressed Sensing (KFCS) .... 165
7.2.2 Dynamic Image Estimation Fusion ..................................... 166
7.2.2.1 Challenge of Dynamic Image Fusion ................... 166
7.2.2.2 Definitions and Assumptions ............................... 167
7.2.2.3 Spatial-Temporal Fusion ...................................... 167
7.2.3 Experiments and Evaluation ................................................ 169
7.2.3.1 The Experiment Settings ...................................... 169
7.2.3.2 Results on the First Image Sequences .................. 170
7.2.3.3 Results on the Second Image Sequences .............. 173
7.2.3.4 Results on the Third Image Sequences ................. 176
7.2.4 Discussion on the Fusion Results ........................................ 179
7.3 Optimal Remote Sensing Images Method Using Fuzzy Integral .... 180
7.3.1 An Overview on the Fusion Methods and Rules
for Remote Sensing ............................................................. 180
7.3.2 Optimal Image Fusion Method with Fuzzy Integral............ 180
Contents XI
7.3.2.1 Optimal IHS Image Fusion .................................. 180
7.3.2.2 Optimal Image Fusion with Fuzzy Integral .......... 183
7.3.3 Experiments and Evaluation ................................................ 184
7.3.3.1 The Experiment Setting ........................................ 184
7.3.3.2 The Experiment Results of First Image ................ 184
7.3.3.3 The Experiment Results of Second Image ........... 185
7.3.4 Discussion on the Fusion Results ........................................ 186
7.4 Conclusions and Future Research ................................................... 186
References ................................................................................................ 187
8 Precision Cultivation System for Greenhouse Production ................ 191
I-Chang Yang, Suming Chen
8.1 Introduction ..................................................................................... 192
8.2 Motivation ....................................................................................... 192
8.3 Sensing and System Development .................................................. 193
8.3.1 Remote Sensing and Monitoring ......................................... 194
8.3.1.1 Multi-spectral Imaging System ............................ 195
8.3.1.2 Environmental Factors Measurement System ...... 198
8.3.1.3 Web Image Monitoring System ........................... 199
8.3.2 Precision Irrigation Control ................................................. 200
8.3.3 Crop Production Traceabiity System................................... 201
8.4 System Integration and Applications .............................................. 204
8.4.1 Local Positioning System .................................................... 204
8.4.2 Precision Irrigation – An Example ...................................... 205
8.5 Conclusions ..................................................................................... 209
References ................................................................................................ 209
9 Environment Monitoring System Based on IEEE 1451 Standard .... 213
A. Kumar, G.P. Hancke
9.1 Introduction ..................................................................................... 213
9.2 Developed Environment Monitoring Systems ................................ 215
9.3 Wireless Standard Transducer Interface Module ............................ 216
9.3.1 Sensor Array ........................................................................ 216
9.3.2 MMC Interface Module ...................................................... 217
9.4 Wireless Communication Module ................................................... 218
9.5 WNCAP Module ............................................................................. 219
9.5.1 Interface between Zigbee Coordinator and NCAP PC ........ 220
9.6 Re-calibration of the System ........................................................... 221
XII Contents
9.7 Results and Discussion .................................................................... 221
9.8 Conclusions ..................................................................................... 223
References ................................................................................................ 224
10 Application of Wireless Sensor Networks Technology for Induction
Motor Monitoring in Industrial Environments ................................... 227
Ruan D. Gomes, Marcéu O. Adissi, Tássio A.B. da Silva,
Abel C. Lima Filho, Marco A. Spohn, Francisco A. Belo
10.1 Introduction ..................................................................................... 227
10.2 Motor Monitoring............................................................................ 230
10.2.1 Efficiency of Motor Energy Conversion ............................. 230
10.2.2 Estimation Methods............................................................. 233
10.3 Wireless Sensor Networks .............................................................. 238
10.3.1 Industrial Wireless Sensor Networks .................................. 239
10.3.2 Coexistence Issues in Unlicensed ISM Bands ..................... 240
10.3.3 IWSN Standards IEEE 802.15.4 ......................................... 241
10.3.4 Embedded Systems ............................................................. 247
10.3.5 WSN-Based Motor Monitoring Systems ............................. 249
10.4 A IWSN for Torque and Efficiency Monitoring of Induction
Motors ............................................................................................. 251
10.4.1 The Employed Estimation Method ...................................... 251
10.4.2 Embedded System ............................................................... 257
10.4.3 Experimental Results ........................................................... 259
10.4.4 Methodology of WSN Performance Evaluation .................. 263
10.4.4.1 Experiment Setup ................................................. 266
10.4.5 WSN Performance Evaluation ............................................ 266
10.5 Conclusions ..................................................................................... 270
References ................................................................................................ 271
11 Advanced Monitoring System on Debris Flow Hazards ..................... 279
Y.-M. Huang, Y.-M. Fang, T.-Y. Chou
11.1 Introduction ..................................................................................... 279
11.2 Debris Flow ..................................................................................... 282
11.2.1 The Causes .......................................................................... 282
11.2.2 Observation Work ............................................................... 282
11.3 Debris Flow Monitoring System ..................................................... 283
11.3.1 Sensors and Instruments ...................................................... 283
11.3.2 Data Acquisition and Communication System .................... 290
Contents XIII
11.3.3 Monitoring Stations ............................................................. 292
11.3.4 Debris Flow Warning .......................................................... 299
11.4 Case Study: Shenmu Area in Taiwan .............................................. 300
11.4.1 Environment and Monitoring System in Shenmu Area ....... 300
11.4.2 Debris Flow Hazard History in Shenmu ............................. 304
11.4.3 Debris Flow on Nov. 10, 2011 ............................................ 305
11.5 Conclusion ...................................................................................... 308
References ................................................................................................ 308
Author Index ................................................................................................. 311
About the Editors
Dr. Henry Leung is a professor of the Department of Electrical and Computer
Engineering of the University of Calgary. Before joining U of C, he was with the
Department of National Defence (DND) of Canada as a defence scientist. His
main duty there was to conduct research and development of automated
surveillance systems, which can perform detection, tracking, identification and
data fusion automatically as a decision aid for military operators. His current
research interests include adaptive systems, computational intelligence, data
mining, information fusion, robotics, sensor networks, signal processing and
wireless communications. He has published extensively in the open literature on
these topics. He has published over 190 journal papers. Dr. Leung has been the
associate editor of various journals such as the International Journal on
Information Fusion, IEEE Signal Processing Letters, IEEE Trans. Circuits and
Systems, International Journal of Advanced Robotic Systems. He was the chair of
the Nonlinear Circuits and Systems of the IEEE Circuit and System Society and
has served on the program committee, organizing committee, track chairs for
various conferences such as the SPIE Conference on Sensor Fusion, IEEE ISCAS
and FUSION. He has also served as guest editors for various journals such as
“Intelligent Transportation Systems” for the International Journal on Information
Fusion and “Cognitive Sensor Networks” for the IEEE Sensor Journal.