Thư viện tri thức trực tuyến
Kho tài liệu với 50,000+ tài liệu học thuật
© 2023 Siêu thị PDF - Kho tài liệu học thuật hàng đầu Việt Nam

Intelligent control systems with LabVIEW
Nội dung xem thử
Mô tả chi tiết
Intelligent Control Systems with LabVIEW™
Pedro Ponce-Cruz • Fernando D. Ramírez-Figueroa
Intelligent Control Systems
with LabVIEW™
123
Pedro Ponce-Cruz, Dr.-Ing.
Fernando D. Ramírez-Figueroa, Research Assistant to Doctor Ponce
Instituto Tecnológico de Estudios Superiores de Monterrey
Campus Ciudad de México
Calle del Puente 222
Col. Ejidos de Huipulco Tlalpan
14380, México, D.F.
México
ISBN 978-1-84882-683-0 e-ISBN 978-1-84882-684-7
DOI 10.1007/978-1-84882-684-7
Springer London Dordrecht Heidelberg New York
British Library Cataloguing in Publication Data
A catalogue record for this book is available from the British Library
Library of Congress Control Number: 2009933628
© Springer-Verlag London Limited 2010
BASIC Stamp® is a federally registered trademark of Parallax Inc. Parallax™ and Ping)))™ are trademarks of Parallax Inc., http://www.parallax.com
Bluetooth® word mark is owned by the Bluetooth SIG, Inc. http://www.bluetooth.com
EmbeddedBlue™ is a trademark of A7 Engineering, Inc. http://www.a7eng.com
NI refers to National Instruments and all of its subsidiaries, business units, and divisions worldwide.
LabVIEW™ is a trademark of National Instruments. This book is an independent publication. National
Instruments is not affiliated with the publisher or the author, and does not authorize, sponsor, endorse or
approve this book. National Instruments Corporation, 11500 N Mopac Expwy, Austin, TX 78759-3504,
U.S.A. http://www.ni.com
Apart from any fair dealing for the purposes of research or private study, or criticism or review, as permitted under the Copyright, Designs and Patents Act 1988, this publication may only be reproduced,
stored or transmitted, in any form or by any means, with the prior permission in writing of the publishers, or in the case of reprographic reproduction in accordance with the terms of licenses issued by the
Copyright Licensing Agency. Enquiries concerning reproduction outside those terms should be sent to
the publishers.
The use of registered names, trademarks, etc., in this publication does not imply, even in the absence of
a specific statement, that such names are exempt from the relevant laws and regulations and therefore
free for general use.
The publisher makes no representation, express or implied, with regard to the accuracy of the information
contained in this book and cannot accept any legal responsibility or liability for any errors or omissions
that may be made.
The publisher and the authors accept no legal responsibility for any damage caused by improper use of
the instructions and programs contained in this book and the DVD. Although the software has been tested
with extreme care, errors in the software cannot be excluded.
Cover design: eStudio Calamar, Figueres/Berlin
Printed on acid-free paper
Springer is part of Springer Science+Business Media (www.springer.com)
This book is dedicated to my mother and son with love.
Pedro Ponce
To my parents Virginia and Fernando because this would not be possible without
their unconditional love and support, and to my advisor and friend, Pedro for giving
me the opportunity to prove myself, and to all those who have accompanied me
along this wonderful journey of knowledge and creation.
David Ramirez
Preface
Control systems are becoming more important every day. At the beginning, the industry used sequential controls for solving a lot of industrial applications in control
systems, and then the linear systems gave us a huge increase in applying automatic
linear control on industrial application. One of the most recent methods for controlling industrial applications is intelligent control, which is based on human behavior
or concerning natural process.
Nowadays, the topic of intelligent control systems has become more than a research subject to the industry. The number of industrial applications is growing every day, faster and faster. Thus, new software and hardware platforms are required
in order to design and develop intelligent control systems. The challenge for these
types of systems is to have a novel platform, which allows designing, testing and implementing an intelligent controller system in a short period of time. For the industry
and academy, LabVIEW™ is one of the most important software platforms for developing engineering applications and could be connected with different hardware
systems, as well as running standalone programs for simulating the controller’s performance (validating the controller by simulation then implementing it). In addition,
LabVIEW is a graphical program that is very easy to learn.
Taking into account these advantages, the software platform described in this
book is LabVIEW from National Instruments™. The book is divided into 7 chapters
and gives all the information required for designing and implementing an intelligent
controller.
Chapter 1 provides an introduction to basic intelligent control concepts and concludes by applying LabVIEW for implementing control systems. Chapter 2 covers
in deep detail the fuzzy logic theory and implementation. This chapter starts with
fundamental fuzzy logic theory for supporting the most important fuzzy logic controllers implemented using LabVIEW.
Chapter 3 deals with artificial neural networks. In this chapter a complete set
of tools for implementing artificial neural networks is presented. Basic examples
of neural networks, such as perceptron, allow the students to understand the most
important topologies in artificial neural networks for modeling and controlling systems. In Chap. 4 the reader can find neuro-fuzzy controllers, which combine the
vii
viii Preface
fuzzy inference systems with an artificial neural network topology. Thus, the neurofuzzy controllers are an interesting option for modeling and controlling industrial
applications. Chapter 5 discusses genetic algorithms, which are representations of
the natural selection process. This chapter also examines how generic algorithms
can be used as optimization methods. Genetic programming is also explained in
detail.
Chapters 6 and 7 show different algorithms for optimizing and predicting that
could be combined with the conventional intelligent system methodologies presented in the previous chapters such as fuzzy logic, artificial neural networks and
neuro-fuzzy systems. The methods presented in Chaps. 6 and 7 are: simulated annealing, fuzzy clustering means, partition coefficients, tabu search and predictors.
Supplemental materials supporting the book are available in the companion
DVD. The DVD includes all the LabVIEW programs (VIs) presented inside the
book for intelligent control systems.
This book would never have been possible without the help of remarkable people
who believed in this project. I am not able to acknowledge all of them here, but I
would like to thank Eloisa Acha, Gustavo Valdes, Jeannie Falcon, Javier Gutierrez
and others at National Instruments for helping us to develop a better book.
Finally, I would like to thank the Instituto Tecnológico de Monterrey campus
Ciudad de México for supporting this research project. I wish to remember all my
friends and colleagues who gave me support during this research journey.
ITESM-CCM Dr. Pedro Ponce-Cruz
México City
Contents
1 Intelligent Control for LabVIEW ................................ 1
1.1 Introduction . . ............................................. 1
1.2 Intelligent Control in Industrial Applications . . . . ................ 3
1.3 LabVIEW . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2 Fuzzy Logic ................................................... 9
2.1 Introduction . . ............................................. 9
2.2 Industrial Applications . . .................................... 9
2.3 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.3.1 Uncertainty in Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.3.2 Concept of Fuzziness . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.4 Foundations of Fuzzy Set Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.4.1 Fuzzy Sets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.4.2 Boolean Operations and Terms . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.4.3 Fuzzy Operations and Terms . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.4.4 Properties of Fuzzy Sets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
2.4.5 Fuzzification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
2.4.6 Extension Principle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
2.4.7 Alpha Cuts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
2.4.8 The Resolution Principle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
2.4.9 Fuzziness of Uncertainty . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
2.4.10 Possibility and Probability Theories . . . . . . . . . . . . . . . . . . . . . 25
2.5 Fuzzy Logic Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
2.5.1 From Classical to Fuzzy Logic . . . . . . . . . . . . . . . . . . . . . . . . . 26
2.5.2 Fuzzy Logic and Approximate Reasoning . . . . . . . . . . . . . . . . 26
2.5.3 Fuzzy Relations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
2.5.4 Properties of Relations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
2.5.5 Max–Min Composition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
2.5.6 Max–Star Composition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
2.5.7 Max–Average Composition . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
ix
x Contents
2.6 Fuzzy Linguistic Descriptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
2.7 The Fuzzy Logic Controller . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
2.7.1 Linguistic Variables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
2.7.2 Membership Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
2.7.3 Rules Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
2.7.4 Mamdani Fuzzy Controller . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
2.7.5 Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
2.7.6 Fuzzification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
2.7.7 Rules Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
2.7.8 Defuzzification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
2.7.9 Tsukamoto Fuzzy Controller . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
2.7.10 Takagi–Sugeno Fuzzy Controller . . . . . . . . . . . . . . . . . . . . . . . 36
2.7.11 Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
2.7.12 Fuzzification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
2.7.13 Rules Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
2.7.14 Crisp Outputs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
2.8 Implementation of the Fuzzy Logic Controllers
Using the Intelligent Control Toolkit for LabVIEW . . . . . . . . . . . . . . 37
2.8.1 Fuzzification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
2.8.2 Rules Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
2.8.3 Defuzzification: Crisp Outputs . . . . . . . . . . . . . . . . . . . . . . . . . 41
2.9 Classical Control Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
Futher Reading . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
3 Artificial Neural Networks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
3.2 Artificial Neural Network Classification . . . . . . . . . . . . . . . . . . . . . . . . 55
3.3 Artificial Neural Networks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
3.3.1 Perceptron . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
3.3.2 Multi-layer Neural Network . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
3.3.3 Trigonometric Neural Networks . . . . . . . . . . . . . . . . . . . . . . . . 71
3.3.4 Kohonen Maps . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
3.3.5 Bayesian or Belief Networks. . . . . . . . . . . . . . . . . . . . . . . . . . . 84
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
Futher Reading . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88
4 Neuro-fuzzy Controller Theory and Application . . . . . . . . . . . . . . . . . . . 89
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89
4.2 The Neuro-fuzzy Controller . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90
4.2.1 Trigonometric Artificial Neural Networks . . . . . . . . . . . . . . . . 91
4.2.2 Fuzzy Cluster Means . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96
4.2.3 Predictive Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98
4.2.4 Results Using the Controller . . . . . . . . . . . . . . . . . . . . . . . . . . . 100
4.2.5 Controller Enhancements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101
Contents xi
4.3 ANFIS: Adaptive Neuro-fuzzy Inference Systems . . . . . . . . . . . . . . . 106
4.3.1 ANFIS Topology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122
Futher Reading . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122
5 Genetic Algorithms and Genetic Programming . . . . . . . . . . . . . . . . . . . . 123
5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123
5.1.1 Evolutionary Computation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123
5.2 Industrial Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124
5.3 Biological Terminology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125
5.3.1 Search Spaces and Fitness . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125
5.3.2 Encoding and Decoding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125
5.4 Genetic Algorithm Stages. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126
5.4.1 Initialization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127
5.4.2 Selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128
5.4.3 Crossover. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129
5.4.4 Mutation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130
5.5 Genetic Algorithms and Traditional Search Methods . . . . . . . . . . . . . 134
5.6 Applications of Genetic Algorithms . . . . . . . . . . . . . . . . . . . . . . . . . . . 135
5.7 Pros and Cons of Genetic Algorithms . . . . . . . . . . . . . . . . . . . . . . . . . . 136
5.8 Selecting Genetic Algorithm Methods . . . . . . . . . . . . . . . . . . . . . . . . . 136
5.9 Messy Genetic Algorithm. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137
5.10 Optimization of Fuzzy Systems Using Genetic Algorithms . . . . . . . . 138
5.10.1 Coding Whole Fuzzy Partitions . . . . . . . . . . . . . . . . . . . . . . . . 138
5.10.2 Standard Fitness Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139
5.10.3 Coding Rule Bases . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139
5.11 An Application of the ICTL for the Optimization
of a Navigation System for Mobile Robots . . . . . . . . . . . . . . . . . . . . . 140
5.12 Genetic Programming Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143
5.12.1 Genetic Programming Definition . . . . . . . . . . . . . . . . . . . . . . . 143
5.12.2 Historical Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144
5.13 Industrial Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144
5.14 Advantages of Evolutionary Algorithms . . . . . . . . . . . . . . . . . . . . . . . . 144
5.15 Genetic Programming Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145
5.15.1 Length . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146
5.16 Genetic Programming Stages . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146
5.16.1 Initialization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146
5.16.2 Fitness . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147
5.16.3 Selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147
5.16.4 Crossover. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147
5.16.5 Mutation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148
5.17 Variations of Genetic Programming . . . . . . . . . . . . . . . . . . . . . . . . . . . 149
5.18 Genetic Programming in Data Modeling . . . . . . . . . . . . . . . . . . . . . . . 150
5.19 Genetic Programming Using the ICTL . . . . . . . . . . . . . . . . . . . . . . . . . 150
xii Contents
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153
Futher Reading . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 154
6 Simulated Annealing, FCM, Partition Coefficients and Tabu Search . 155
6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155
6.1.1 Introduction to Simulated Annealing . . . . . . . . . . . . . . . . . . . . 156
6.1.2 Pattern Recognition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157
6.1.3 Introduction to Tabu Search . . . . . . . . . . . . . . . . . . . . . . . . . . . 157
6.1.4 Industrial Applications of Simulated Annealing . . . . . . . . . . . 158
6.1.5 Industrial Applications of Fuzzy Clustering . . . . . . . . . . . . . . 158
6.1.6 Industrial Applications of Tabu Search . . . . . . . . . . . . . . . . . . 158
6.2 Simulated Annealing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159
6.2.1 Simulated Annealing Algorithm . . . . . . . . . . . . . . . . . . . . . . . . 161
6.2.2 Sample Iteration Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163
6.2.3 Example of Simulated Annealing
Using the Intelligent Control Toolkit for LabVIEW . . . . . . . . 163
6.3 Fuzzy Clustering Means . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 166
6.4 FCM Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 170
6.5 Partition Coefficients. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 172
6.6 Reactive Tabu Search . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 173
6.6.1 Introduction to Reactive Tabu Search . . . . . . . . . . . . . . . . . . . . 173
6.6.2 Memory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 174
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 189
Futher Reading . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 190
7 Predictors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 191
7.1 Introduction to Forecasting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 191
7.2 Industrial Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 192
7.3 Forecasting Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 193
7.3.1 Qualitative Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 193
7.3.2 Quantitative Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 194
7.4 Regression Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 194
7.5 Exponential Smoothing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 194
7.5.1 Simple-exponential Smoothing . . . . . . . . . . . . . . . . . . . . . . . . . 195
7.5.2 Simple-exponential Smoothing Algorithm . . . . . . . . . . . . . . . 195
7.5.3 Double-exponential Smoothing . . . . . . . . . . . . . . . . . . . . . . . . 196
7.5.4 Holt–Winter Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 197
7.5.5 Non-seasonal Box–Jenkins Models . . . . . . . . . . . . . . . . . . . . . 198
7.5.6 General Box–Jenkins Model . . . . . . . . . . . . . . . . . . . . . . . . . . . 199
7.6 Minimum Variance Estimation and Control . . . . . . . . . . . . . . . . . . . . . 200
7.7 Example of Predictors Using the Intelligent Control Toolkit
for LabVIEW (ICTL) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 202
7.7.1 Exponential Smoothing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 202
7.7.2 Box–Jenkins Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 203
7.7.3 Minimum Variance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 204
Contents xiii
7.8 Gray Modeling and Prediction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 205
7.8.1 Modeling Procedure of the Gray System . . . . . . . . . . . . . . . . . 206
7.9 Example of a Gray Predictor Using the ICTL . . . . . . . . . . . . . . . . . . . 207
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 210
Futher Reading . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 210
Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 211