Thư viện tri thức trực tuyến
Kho tài liệu với 50,000+ tài liệu học thuật
© 2023 Siêu thị PDF - Kho tài liệu học thuật hàng đầu Việt Nam

Heat exchangers : selection, rating, and thermal design
Nội dung xem thử
Mô tả chi tiết
K12267_cover 1/30/12 2:31 PM Page 1
Composite
C M Y CM MY CY CMY K
K12267
www.crcpress.com
an informa business
6000 Broken Sound Parkway, NW
Suite 300, Boca Raton, FL 33487
711 Third Avenue
New York, NY 10017
2 Park Square, Milton Park
Abingdon, Oxon OX14 4RN, UK
HEAT
EXCHANGERS
Selection, Rating, and
Thermal Design
Third Edition HEAT
EXCHANGERS
Selection, Rating, and Thermal Design
HEAT EXCHANGERS Kakaç • Liu • Pramuanjaroenkij
www.crcpress.com
Third
Edition
Third Edition
MECHANICAL ENGINEERING
Heat exchangers are essential in a wide range of engineering applications, including
power plants, automobiles, airplanes, process and chemical industries, and heating,
air conditioning and refrigeration systems. Revised and updated with new problem
sets and examples, Heat Exchangers: Selection, Rating, and Thermal Design, Third
Edition presents a systematic treatment of the various types of heat exchangers,
focusing on selection, thermal-hydraulic design, and rating.
Topics discussed include
• Classification of heat exchangers according to different criteria
• Basic design methods for sizing and rating of heat exchangers
• Single-phase forced convection correlations in channels
• Pressure drop and pumping power for heat exchangers and their
piping circuit
• Design solutions for heat exchangers subject to fouling
• Double-pipe heat exchanger design methods
• Correlations for the design of two-phase flow heat exchangers
• Thermal design methods and processes for shell-and-tube, compact,
and gasketed-plate heat exchangers
• Thermal design of condensers and evaporators
This third edition contains two new chapters. Micro/Nano Heat Transfer explores
the thermal design fundamentals for microscale heat exchangers and the
enhancement heat transfer for applications to heat exchanger design with
nanofluids. It also examines single-phase forced convection correlations as well
as flow friction factors for microchannel flows for heat transfer and pumping
power calculations. Polymer Heat Exchangers introduces an alternative design
option for applications hindered by the operating limitations of metallic
heat exchangers. The appendices provide the thermophysical properties of
various fluids.
Each chapter contains examples illustrating thermal design methods and procedures
and relevant nomenclature. End-of-chapter problems enable students to test their
assimilation of the material.
HEAT
EXCHANGERS
Selection, Rating, and
Thermal Design
Third Edition
This page intentionally left blank
HEAT
EXCHANGERS
Selection, Rating, and
Thermal Design
Third Edition
CRC Press is an imprint of the
Taylor & Francis Group, an informa business
Boca Raton London New York
CRC Press
Taylor & Francis Group
6000 Broken Sound Parkway NW, Suite 300
Boca Raton, FL 33487-2742
© 2012 by Taylor & Francis Group, LLC
CRC Press is an imprint of Taylor & Francis Group, an Informa business
No claim to original U.S. Government works
Version Date: 20120110
International Standard Book Number-13: 978-1-4398-4991-0 (eBook - PDF)
This book contains information obtained from authentic and highly regarded sources. Reasonable
efforts have been made to publish reliable data and information, but the author and publisher cannot
assume responsibility for the validity of all materials or the consequences of their use. The authors and
publishers have attempted to trace the copyright holders of all material reproduced in this publication
and apologize to copyright holders if permission to publish in this form has not been obtained. If any
copyright material has not been acknowledged please write and let us know so we may rectify in any
future reprint.
Except as permitted under U.S. Copyright Law, no part of this book may be reprinted, reproduced,
transmitted, or utilized in any form by any electronic, mechanical, or other means, now known or
hereafter invented, including photocopying, microfilming, and recording, or in any information storage or retrieval system, without written permission from the publishers.
For permission to photocopy or use material electronically from this work, please access www.copyright.com (http://www.copyright.com/) or contact the Copyright Clearance Center, Inc. (CCC), 222
Rosewood Drive, Danvers, MA 01923, 978-750-8400. CCC is a not-for-profit organization that provides licenses and registration for a variety of users. For organizations that have been granted a photocopy license by the CCC, a separate system of payment has been arranged.
Trademark Notice: Product or corporate names may be trademarks or registered trademarks, and are
used only for identification and explanation without intent to infringe.
Visit the Taylor & Francis Web site at
http://www.taylorandfrancis.com
and the CRC Press Web site at
http://www.crcpress.com
v
Contents
Preface................................................................................................................... xiii
1. Classification of Heat Exchangers...............................................................1
1.1 Introduction ...........................................................................................1
1.2 Recuperation and Regeneration..........................................................1
1.3 Transfer Processes.................................................................................6
1.4 Geometry of Construction...................................................................8
1.4.1 Tubular Heat Exchangers........................................................8
1.4.1.1 Double-Pipe Heat Exchangers................................8
1.4.1.2 Shell-and-Tube Heat Exchangers............................9
1.4.1.3 Spiral-Tube-Type Heat Exchangers ...................... 12
1.4.2 Plate Heat Exchangers...........................................................12
1.4.2.1 Gasketed Plate Heat Exchangers.......................... 12
1.4.2.2 Spiral Plate Heat Exchangers................................ 14
1.4.2.3 Lamella Heat Exchangers...................................... 15
1.4.3 Extended Surface Heat Exchangers..................................... 17
1.4.3.1 Plate-Fin Heat Exchanger...................................... 17
1.4.3.2 Tubular-Fin Heat Exchangers............................... 18
1.5 Heat Transfer Mechanisms................................................................23
1.6 Flow Arrangements ............................................................................ 24
1.7 Applications .........................................................................................25
1.8 Selection of Heat Exchangers ............................................................26
References .......................................................................................................30
2. Basic Design Methods of Heat Exchangers.............................................33
2.1 Introduction .........................................................................................33
2.2 Arrangement of Flow Paths in Heat Exchangers ...........................33
2.3 Basic Equations in Design..................................................................35
2.4 Overall Heat Transfer Coefficient..................................................... 37
2.5 LMTD Method for Heat Exchanger Analysis .................................43
2.5.1 Parallel- and Counterflow Heat Exchangers......................43
2.5.2 Multipass and Crossflow Heat Exchangers .......................47
2.6 The ε-NTU Method for Heat Exchanger Analysis .........................56
2.7 Heat Exchanger Design Calculation ................................................66
2.8 Variable Overall Heat Transfer Coefficient ..................................... 67
2.9 Heat Exchanger Design Methodology............................................. 70
Nomenclature.................................................................................................73
References .......................................................................................................78
vi Contents
3. Forced Convection Correlations for the Single-Phase Side of
Heat Exchangers............................................................................................ 81
3.1 Introduction ......................................................................................... 81
3.2 Laminar Forced Convection..............................................................84
3.2.1 Hydrodynamically Developed and Thermally
Developing Laminar Flow in Smooth Circular Ducts.......... 84
3.2.2 Simultaneously Developing Laminar Flow in
Smooth Ducts .........................................................................85
3.2.3 Laminar Flow through Concentric Annular
Smooth Ducts .........................................................................86
3.3 Effect of Variable Physical Properties ..............................................88
3.3.1 Laminar Flow of Liquids ......................................................90
3.3.2 Laminar Flow of Gases .........................................................92
3.4 Turbulent Forced Convection............................................................93
3.5 Turbulent Flow in Smooth Straight Noncircular Ducts ................99
3.6 Effect of Variable Physical Properties in Turbulent
Forced Convection ............................................................................ 103
3.6.1 Turbulent Liquid Flow in Ducts ........................................ 103
3.6.2 Turbulent Gas Flow in Ducts ............................................. 104
3.7 Summary of Forced Convection in Straight Ducts ...................... 107
3.8 Heat Transfer from Smooth-Tube Bundles .................................... 111
3.9 Heat Transfer in Helical Coils and Spirals .................................... 114
3.9.1 Nusselt Numbers of Helical Coils—Laminar Flow........ 116
3.9.2 Nusselt Numbers for Spiral Coils—Laminar Flow ........ 117
3.9.3 Nusselt Numbers for Helical Coils—Turbulent Flow..........117
3.10 Heat Transfer in Bends..................................................................... 118
3.10.1 Heat Transfer in 90° Bends ................................................. 118
3.10.2 Heat Transfer in 180° Bends ............................................... 119
Nomenclature............................................................................................... 120
References .....................................................................................................125
4. Heat Exchanger Pressure Drop and Pumping Power.......................... 129
4.1 Introduction ....................................................................................... 129
4.2 Tube-Side Pressure Drop ................................................................. 129
4.2.1 Circular Cross-Sectional Tubes.......................................... 129
4.2.2 Noncircular Cross-Sectional Ducts................................... 132
4.3 Pressure Drop in Tube Bundles in Crossflow............................... 135
4.4 Pressure Drop in Helical and Spiral Coils .................................... 137
4.4.1 Helical Coils—Laminar Flow ............................................ 138
4.4.2 Spiral Coils—Laminar Flow .............................................. 138
4.4.3 Helical Coils—Turbulent Flow........................................... 139
4.4.4 Spiral Coils—Turbulent Flow............................................. 139
4.5 Pressure Drop in Bends and Fittings ............................................. 140
4.5.1 Pressure Drop in Bends ...................................................... 140
4.5.2 Pressure Drop in Fittings.................................................... 142
Contents vii
4.6 Pressure Drop for Abrupt Contraction, Expansion, and
Momentum Change.......................................................................... 147
4.7 Heat Transfer and Pumping Power Relationship......................... 148
Nomenclature............................................................................................... 150
References ..................................................................................................... 155
5. Micro/Nano Heat Transfer........................................................................ 157
5.1 PART A—Heat Transfer for Gaseous and Liquid Flow in
Microchannels ................................................................................... 157
5.1.1 Introduction of Heat Transfer in Microchannels ............ 157
5.1.2 Fundamentals of Gaseous Flow in Microchannels ........ 158
5.1.2.1 Knudsen Number................................................. 158
5.1.2.2 Velocity Slip........................................................... 160
5.1.2.3 Temperature Jump ............................................... 160
5.1.2.4 Brinkman Number............................................... 161
5.1.3 Engineering Applications for Gas Flow ........................... 163
5.1.3.1 Heat Transfer in Gas Flow .................................. 165
5.1.3.2 Friction Factor....................................................... 169
5.1.3.3 Laminar to Turbulent Transition Regime......... 173
5.1.4 Engineering Applications of Single-Phase Liquid
Flow in Microchannels ....................................................... 177
5.1.4.1 Nusselt Number and Friction Factor
Correlations for Single-Phase Liquid Flow ...... 179
5.1.4.2 Roughness Effect on Friction Factor.................. 185
5.2 PART B—Single-Phase Convective Heat Transfer with
Nanofluids.......................................................................................... 186
5.2.1 Introduction of Convective Heat Transfer with
Nanofluids ............................................................................ 186
5.2.1.1 Particle Materials and Base Fluids..................... 187
5.2.1.2 Particle Size and Shape........................................ 187
5.2.1.3 Nanofluid Preparation Methods ........................ 188
5.2.2 Thermal Conductivity of Nanofluids ............................... 188
5.2.2.1 Classical Models ................................................... 189
5.2.2.2 Brownian Motion of Nanoparticles................... 191
5.2.2.3 Clustering of Nanoparticles................................ 193
5.2.2.4 Liquid Layering around Nanoparticles ............ 196
5.2.3 Thermal Conductivity Experimental Studies of
Nanofluids ............................................................................203
5.2.4 Convective Heat Trasfer of Nanofluids............................. 207
5.2.5 Analysis of Convective Heat Transfer of Nanofluids ..... 212
5.2.5.1 Constant Wall Heat Flux Boundary Condition... 212
5.2.5.2 Constant Wall Temperature Boundary
Condition............................................................... 214
5.2.6 Experimental Correlations of Convective Heat
Transfer of Nanofluids ........................................................ 216
viii Contents
Nomenclature............................................................................................... 224
References .....................................................................................................228
6. Fouling of Heat Exchangers...................................................................... 237
6.1 Introduction ....................................................................................... 237
6.2 Basic Considerations......................................................................... 237
6.3 Effects of Fouling .............................................................................. 239
6.3.1 Effect of Fouling on Heat Transfer.................................... 240
6.3.2 Effect of Fouling on Pressure Drop................................... 241
6.3.3 Cost of Fouling..................................................................... 243
6.4 Aspects of Fouling ............................................................................244
6.4.1 Categories of Fouling ..........................................................244
6.4.1.1 Particulate Fouling...............................................244
6.4.1.2 Crystallization Fouling........................................ 245
6.4.1.3 Corrosion Fouling ................................................ 245
6.4.1.4 Biofouling .............................................................. 245
6.4.1.5 Chemical Reaction Fouling................................. 246
6.4.2 Fundamental Processes of Fouling ................................... 246
6.4.2.1 Initiation ................................................................ 246
6.4.2.2 Transport ............................................................... 246
6.4.2.3 Attachment............................................................ 247
6.4.2.4 Removal ................................................................. 247
6.4.2.5 Aging...................................................................... 248
6.4.3 Prediction of Fouling........................................................... 248
6.5 Design of Heat Exchangers Subject to Fouling.............................250
6.5.1 Fouling Resistance...............................................................250
6.5.2 Cleanliness Factor................................................................256
6.5.3 Percent over Surface ............................................................ 257
6.5.3.1 Cleanliness Factor................................................260
6.5.3.2 Percent over Surface.............................................260
6.6 Operations of Heat Exchangers Subject to Fouling ..................... 262
6.7 Techniques to Control Fouling........................................................264
6.7.1 Surface Cleaning Techniques.............................................264
6.7.1.1 Continuous Cleaning...........................................264
6.7.1.2 Periodic Cleaning.................................................264
6.7.2 Additives ...............................................................................265
6.7.2.1 Crystallization Fouling........................................265
6.7.2.2 Particulate Fouling...............................................266
6.7.2.3 Biological Fouling.................................................266
6.7.2.4 Corrosion Fouling ................................................266
Nomenclature...............................................................................................266
References ..................................................................................................... 270
7. Double-Pipe Heat Exchangers ................................................................. 273
7.1 Introduction ....................................................................................... 273
Contents ix
7.2 Thermal and Hydraulic Design of Inner Tube ............................. 276
7.3 Thermal and Hydraulic Analysis of Annulus .............................. 278
7.3.1 Hairpin Heat Exchanger with Bare Inner Tube .............. 278
7.3.2 Hairpin Heat Exchangers with Multitube Finned
Inner Tubes ...........................................................................283
7.4 Parallel–Series Arrangements of Hairpins ................................... 291
7.5 Total Pressure Drop.......................................................................... 294
7.6 Design and Operational Features................................................... 295
Nomenclature............................................................................................... 297
References .....................................................................................................304
8. Design Correlations for Condensers and Evaporators .......................307
8.1 Introduction .......................................................................................307
8.2 Condensation.....................................................................................307
8.3 Film Condensation on a Single Horizontal Tube .........................308
8.3.1 Laminar Film Condensation..............................................308
8.3.2 Forced Convection ...............................................................309
8.4 Film Condensation in Tube Bundles .............................................. 312
8.4.1 Effect of Condensate Inundation....................................... 313
8.4.2 Effect of Vapor Shear........................................................... 317
8.4.3 Combined Effects of Inundation and Vapor Shear......... 317
8.5 Condensation inside Tubes..............................................................322
8.5.1 Condensation inside Horizontal Tubes ............................ 322
8.5.2 Condensation inside Vertical Tubes.................................. 327
8.6 Flow Boiling....................................................................................... 329
8.6.1 Subcooled Boiling ................................................................ 329
8.6.2 Flow Pattern.......................................................................... 331
8.6.3 Flow Boiling Correlations...................................................334
Nomenclature...............................................................................................353
References .....................................................................................................356
9. Shell-and-Tube Heat Exchangers............................................................. 361
9.1 Introduction ....................................................................................... 361
9.2 Basic Components............................................................................. 361
9.2.1 Shell Types ............................................................................ 361
9.2.2 Tube Bundle Types...............................................................364
9.2.3 Tubes and Tube Passes ........................................................366
9.2.4 Tube Layout ..........................................................................368
9.2.5 Baffle Type and Geometry.................................................. 371
9.2.6 Allocation of Streams .......................................................... 376
9.3 Basic Design Procedure of a Heat Exchanger............................... 378
9.3.1 Preliminary Estimation of Unit Size.................................380
9.3.2 Rating of the Preliminary Design .....................................386
9.4 Shell-Side Heat Transfer and Pressure Drop ................................ 387
9.4.1 Shell-Side Heat Transfer Coefficient.................................. 387
x Contents
9.4.2 Shell-Side Pressure Drop ....................................................389
9.4.3 Tube-Side Pressure Drop ....................................................390
9.4.4 Bell–Delaware Method........................................................ 395
9.4.4.1 Shell-Side Heat Transfer Coefficient.................. 396
9.4.4.2 Shell-Side Pressure Drop ....................................407
Nomenclature............................................................................................... 419
References .....................................................................................................425
10. Compact Heat Exchangers ........................................................................427
10.1 Introduction .....................................................................................427
10.1.1 Heat Transfer Enhancement...........................................427
10.1.2 Plate-Fin Heat Exchangers.............................................. 431
10.1.3 Tube-Fin Heat Exchangers.............................................. 431
10.2 Heat Transfer and Pressure Drop.................................................433
10.2.1 Heat Transfer....................................................................433
10.2.2 Pressure Drop for Finned-Tube Exchangers ................441
10.2.3 Pressure Drop for Plate-Fin Exchangers ......................441
Nomenclature...............................................................................................446
References .....................................................................................................449
11. Gasketed-Plate Heat Exchangers............................................................. 451
11.1 Introduction ..................................................................................... 451
11.2 Mechanical Features....................................................................... 451
11.2.1 Plate Pack and the Frame................................................453
11.2.2 Plate Types ........................................................................455
11.3 Operational Characteristics........................................................... 457
11.3.1 Main Advantages............................................................. 457
11.3.2 Performance Limits .........................................................459
11.4 Passes and Flow Arrangements....................................................460
11.5 Applications ..................................................................................... 461
11.5.1 Corrosion........................................................................... 462
11.5.2 Maintenance .....................................................................465
11.6 Heat Transfer and Pressure Drop Calculations..........................466
11.6.1 Heat Transfer Area ..........................................................466
11.6.2 Mean Flow Channel Gap................................................ 467
11.6.3 Channel Hydraulic Diameter.........................................468
11.6.4 Heat Transfer Coefficient................................................468
11.6.5 Channel Pressure Drop................................................... 474
11.6.6 Port Pressure Drop .......................................................... 474
11.6.7 Overall Heat Transfer Coefficient.................................. 475
11.6.8 Heat Transfer Surface Area ............................................ 475
11.6.9 Performance Analysis ..................................................... 476
11.7 Thermal Performance..................................................................... 481
Nomenclature...............................................................................................484
References .....................................................................................................488
Contents xi
12. Condensers and Evaporators.................................................................... 491
12.1 Introduction ..................................................................................... 491
12.2 Shell and Tube Condensers ........................................................... 492
12.2.1 Horizontal Shell-Side Condensers................................. 492
12.2.2 Vertical Shell-Side Condensers ...................................... 495
12.2.3 Vertical Tube-Side Condensers ...................................... 495
12.2.4 Horizontal in-Tube Condensers..................................... 497
12.3 Steam Turbine Exhaust Condensers.............................................500
12.4 Plate Condensers............................................................................. 501
12.5 Air-Cooled Condensers..................................................................502
12.6 Direct Contact Condensers............................................................503
12.7 Thermal Design of Shell-and-Tube Condensers .........................504
12.8 Design and Operational Considerations ..................................... 515
12.9 Condensers for Refrigeration and Air-Conditioning ................ 516
12.9.1 Water-Cooled Condensers.............................................. 518
12.9.2 Air-Cooled Condensers .................................................. 519
12.9.3 Evaporative Condensers ................................................. 519
12.10 Evaporators for Refrigeration and Air-Conditioning................ 522
12.10.1 Water-Cooling Evaporators (Chillers)........................... 522
12.10.2 Air-Cooling Evaporators (Air Coolers)......................... 523
12.11 Thermal Analysis............................................................................ 525
12.11.1 Shah Correlation .............................................................. 526
12.11.2 Kandlikar Correlation..................................................... 528
12.11.3 Güngör and Winterton Correlation............................... 529
12.12 Standards for Evaporators and Condensers................................ 531
Nomenclature...............................................................................................536
References .....................................................................................................540
13. Polymer Heat Exchangers .........................................................................543
13.1 Introduction ....................................................................................543
13.2 Polymer Matrix Composite Materials (PMC)..............................547
13.3 Nanocomposites .............................................................................. 551
13.4 Application of Polymers in Heat Exchangers ............................ 552
13.5 Polymer Compact Heat Exchangers .............................................563
13.6 Potential Applications for Polymer Film Compact
Heat Exchangers.............................................................................. 567
13.7 Thermal Design of Polymer Heat Exchangers............................ 570
References ..................................................................................................... 573
Appendix A.........................................................................................................577
Appendix B..........................................................................................................583
Index .....................................................................................................................607
This page intentionally left blank
xiii
Preface
This third edition of Heat Exchangers: Selection, Rating, and Thermal Design has
retained the basic objectives and level of the second edition to present a systematic treatment of the selections, thermal–hydraulic designs, and ratings
of the various types of heat exchanging equipment. All the popular features
of the second edition are retained while new ones are added. In this edition,
modifications have been made throughout the book in response to users’
suggestions and input from students who heard lectures based on the second edition of this book.
Included are 58 solved examples to demonstrate thermal–hydraulic
designs and ratings of heat exchangers; these examples have been extensively revised in the third edition. A complete solutions manual is now also
available, which provides guidance for approaching the thermal design
problems of heat exchangers and for the design project topics suggested at
the end of each chapter.
Heat exchangers are vital in power producing plants, process and chemical industries, and in heating, ventilating, air-conditioning, refrigeration systems, and cooling of electronic systems. A large number of industries are
engaged in designing various types of heat exchange equipment. Courses
are offered at many colleges and universities on thermal design under various titles.
There is extensive literature on this subject; however, the information
has been widely scattered. This book provides a systematic approach and
should be used as an up-to-date textbook based on scattered literature
for senior undergraduate and first-year graduate students in mechanical,
nuclear, aerospace, and chemical engineering programs who have taken
introductory courses in thermodynamics, heat transfer, and fluid mechanics. This systematic approach is also essential for beginners who are interested in industrial applications of thermodynamics, heat transfer, and
fluid mechanics, and for the designers and the operators of heat exchange
equipment. This book focuses on the selections, thermohydraulic designs,
design processes, ratings, and operational problems of various types of heat
exchangers.
One of the main objectives of this textbook is to introduce thermal design
by describing various types of single- and two-phase flow heat exchangers,
detailing their specific fields of application, selection, and thermohydraulic
design and rating, and showing thermal design and rating processes with
worked examples and end-of-chapter problems including student design
projects.
xiv Preface
Much of this text is devoted to double-pipe, shell-and-tube, compact,
gasketed-plate heat exchanger types, condensers, and evaporators. Their
design processes are described and thermal–hydraulic design examples are
presented. Some other types, mainly specialized ones, are briefly described
without design examples. Thermal design factors and methods are common,
however, to all heat exchangers, regardless of their function.
This book begins in Chapter 1 with the classification of heat exchangers according to different criteria. Chapter 2 provides the basic design
methods for sizing and rating heat exchangers. Chapter 3 is a review of
single-phase forced convection correlations in channels. A large number
of experimental and analytical correlations are available for the heat
transfer coefficient and flow friction factor for laminar and turbulent
flow through ducts. Thus, it is often a difficult and confusing task for
a student, and even a designer, to choose appropriate correlations. In
Chapter 3, recommended correlations for the single-phase side of heat
exchangers are given with worked examples. Chapter 4 discusses pressure drop and pumping power for heat exchangers and their piping
circuit analysis. The thermal design fundamentals for microscale heat
exchangers and the enhancement heat transfer for the applications to
the heat exchanger design with nanofluids are provided in Chapter 5.
Also presented in Chapter 5 are single-phase forced convection correlations and flow friction factors for microchannel flows for heat transfer
and pumping power calculations. One of the major unresolved problems
in heat exchanger equipment is fouling; the design of heat exchangers
subject to fouling is presented in Chapter 6. Double-pipe heat exchanger
design methods are presented in Chapter 7. The important design correlations for the design of two-phase flow heat exchangers are given in
Chapter 8. The thermal design methods and processes for shell-and-tube,
compact, and gasketed-plate heat exchangers are presented in Chapters 9,
10, and 11 for single-phase duties, respectively. Chapter 10 deals with the
gasketed-plate heat exchangers, and has been revised with new correlations to calculate heat transfer and friction coefficients for chevron-type
plates provided; solved examples in Chapter 10 and throughout the book
have been modified. With this arrangement, both advanced students and
beginners will achieve a better understanding of thermal design and will
be better prepared to specifically understand the thermal design of condensers and evaporators that is introduced in Chapter 12. An overview of
polymer heat exchangers is introduced in Chapter 13 as a new chapter; in
some applications, the operating limitations of metallic heat exchangers
have created the need to develop alternative designs using other materials, such as polymers, which have the ability to resist fouling and corrosion. Besides, the use of polymers offers substantial reductions in weight,