Thư viện tri thức trực tuyến
Kho tài liệu với 50,000+ tài liệu học thuật
© 2023 Siêu thị PDF - Kho tài liệu học thuật hàng đầu Việt Nam

Foundations of Mathematical and Computational Economics
Nội dung xem thử
Mô tả chi tiết
Foundations of Mathematical and Computational
Economics
Second Edition
Kamran Dadkhah
Foundations of Mathematical
and Computational
Economics
Second Edition
123
Kamran Dadkhah
Northeastern University
Department of Economics
Boston
USA
First edition published by Thomson South-Western 2007, ISBN 978-0324235838
ISBN 978-3-642-13747-1 e-ISBN 978-3-642-13748-8
DOI 10.1007/978-3-642-13748-8
Springer Heidelberg Dordrecht London New York
© Springer-Verlag Berlin Heidelberg 2007, 2011
This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting
reproduction on microfilm or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9,
1965, in its current version, and permission for use must always be obtained from Springer. Violations
are liable to prosecution under the German Copyright Law.
The use of general descriptive names, registered names, trademarks, etc. in this publication does not
imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
Cover design: WMXDesign, Heidelberg
Printed on acid-free paper
Springer is part of Springer Science+Business Media (www.springer.com)
To Karen and my daughter, Lara
Preface
Mathematics is both a language of its own and a way of thinking; applying
mathematics to economics reveals that mathematics is indeed inherent to economic life. The objective of this book is to teach mathematical knowledge and
computational skills required for macro and microeconomic analysis, as well as
econometrics. In addition, I hope it conveys a deeper understanding and appreciation
of mathematics.
Examples in the following chapters are chosen from all areas of economics
and econometrics. Some have very practical applications, such as determining
monthly mortgage payments; others involve more abstract models, such as systems of dynamic equations. Some examples are familiar in the study of micro and
macroeconomics; others involve less well-known and more recent models, such as
real business cycle theory.
Increasingly, economists need to make complicated calculations. Systems of
dynamic equations are used to forecast different economic variables several years
into the future. Such systems are used to assess the effects of alternative policies,
such as different methods of financing Social Security over a few decades. Also,
many theories in microeconomics, industrial organization, and macroeconomics
require modeling the behavior and interactions of many decision makers. These
types of calculation require computational dexterity. Thus, this book provides an
introduction to numerical methods, computation, and programming with Excel and
Matlab. In addition, because of the increasing use of computer software such as
Maple and Mathematica, sections are included to introduce the student to differentiation, integration, and solving difference and differential equations using Maple and
to the concept of computer-aided mathematical proof.
The second edition differs from the first in several respects. Parts of the book
are rearranged, some materials are deleted and some new topics and examples are
added. In the first edition most computational examples used Matlab and some
Excel. In the present edition, Excel and Matlab are given equal weights. These are
done in the hope of making the book more reader friendly. Similarly, more use
is made of the Maple program for solving non-numerical problems. Finally, many
errors had crept into the first edition, which are corrected in the present edition. I am
indebted to students in my math and stat classes for pointing out some of them.
vii
viii Preface
I would like to thank Barbara Fess of Springer-Verlag for her support in preparing
this new edition. I also would like to thank Saranya Baskar and her colleagues at
Integra for their excellent work in producing the book.
As always, my greatest appreciation is to Karen Challberg, who during the entire
project gave me support, encouragement, and love.
Contents
Part I Basic Concepts and Methods
1 Mathematics, Computation, and Economics ............ 3
1.1 Mathematics . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.2 Philosophies of Mathematics .................. 9
1.3 Women in Mathematics . . . . . . . . . . . . . . . . . . . . . 11
1.4 Computation . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
1.5 Mathematics and Economics . . . . . . . . . . . . . . . . . . 14
1.6 Computation and Economics . . . . . . . . . . . . . . . . . . 14
2 Basic Mathematical Concepts and Methods . . . . . . . . . . . . . 17
2.1 Functions of Real Variables . . . . . . . . . . . . . . . . . . . 17
2.1.1 Variety of Economic Relationships . . . . . . . . . . 22
2.1.2 Exercises . . . . . . . . . . . . . . . . . . . . . . . . 23
2.2 Series . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
2.2.1 Summation Notation . . . . . . . . . . . . . . . . 24
2.2.2 Limit . . . . . . . . . . . . . . . . . . . . . . . . . . 25
2.2.3 Convergent and Divergent Series . . . . . . . . . . . 27
2.2.4 Arithmetic Progression . . . . . . . . . . . . . . . . 29
2.2.5 Geometric Progression . . . . . . . . . . . . . . . . . 31
2.2.6 Exercises . . . . . . . . . . . . . . . . . . . . . . . . 34
2.3 Permutations, Factorial, Combinations, and the
Binomial Expansion . . . . . . . . . . . . . . . . . . . . . . . 35
2.3.1 Exercises . . . . . . . . . . . . . . . . . . . . . . . . 37
2.4 Logarithm and Exponential Functions . . . . . . . . . . . . . 38
2.4.1 Logarithm . . . . . . . . . . . . . . . . . . . . . . . 38
2.4.2 Base of Natural Logarithm, e . . . . . . . . . . . . . 40
2.4.3 Exercises . . . . . . . . . . . . . . . . . . . . . . . . 41
2.5 Mathematical Proof . . . . . . . . . . . . . . . . . . . . . . . 42
2.5.1 Deduction, Mathematical Induction, and
Proof by Contradiction . . . . . . . . . . . . . . . . . 42
2.5.2 Computer-Assisted Mathematical Proof . . . . . . . . 44
2.5.3 Exercises . . . . . . . . . . . . . . . . . . . . . . . . 45
ix
x Contents
2.6 Trigonometry . . . . . . . . . . . . . . . . . . . . . . . . . . 46
2.6.1 Cycles and Frequencies . . . . . . . . . . . . . . . . 50
2.6.2 Exercises . . . . . . . . . . . . . . . . . . . . . . . . 51
2.7 Complex Numbers . . . . . . . . . . . . . . . . . . . . . . . 51
2.7.1 Exercises . . . . . . . . . . . . . . . . . . . . . . . . 56
3 Basic Concepts of Computation . . . . . . . . . . . . . . . . . . . 57
3.1 Iterative Methods . . . . . . . . . . . . . . . . . . . . . . . . 57
3.1.1 Naming Cells in Excel . . . . . . . . . . . . . . . . . 60
3.2 Absolute and Relative Computation Errors . . . . . . . . . . . 61
3.3 Efficiency of Computation . . . . . . . . . . . . . . . . . . . 62
3.4 o and O . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
3.5 Solving an Equation . . . . . . . . . . . . . . . . . . . . . . . 66
3.6 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
4 Basic Concepts and Methods of Probability Theory and Statistics 69
4.1 Probability . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
4.2 Random Variables and Probability Distributions . . . . . . . . 72
4.3 Marginal and Conditional Distributions . . . . . . . . . . . . 74
4.4 The Bayes Theorem . . . . . . . . . . . . . . . . . . . . . . . 79
4.5 The Law of Iterated Expectations . . . . . . . . . . . . . . . . 81
4.6 Continuous Random Variables . . . . . . . . . . . . . . . . . 82
4.7 Correlation and Regression . . . . . . . . . . . . . . . . . . . 85
4.8 Markov Chains . . . . . . . . . . . . . . . . . . . . . . . . . 88
4.9 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90
Part II Linear Algebra
5 Vectors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95
5.1 Vectors and Vector Space . . . . . . . . . . . . . . . . . . . . 96
5.1.1 Vector Space . . . . . . . . . . . . . . . . . . . . . . 100
5.1.2 Norm of a Vector . . . . . . . . . . . . . . . . . . . . 102
5.1.3 Metric . . . . . . . . . . . . . . . . . . . . . . . . . 104
5.1.4 Angle Between Two Vectors
and the Cauchy-Schwarz Theorem . . . . . . . . . . 105
5.1.5 Exercises . . . . . . . . . . . . . . . . . . . . . . . . 108
5.2 Orthogonal Vectors . . . . . . . . . . . . . . . . . . . . . . . 109
5.2.1 Gramm-Schmidt Algorithm . . . . . . . . . . . . . . 109
5.2.2 Exercises . . . . . . . . . . . . . . . . . . . . . . . . 111
6 Matrices and Matrix Algebra . . . . . . . . . . . . . . . . . . . . 113
6.1 Basic Definitions and Operations . . . . . . . . . . . . . . . . 113
6.1.1 Systems of Linear Equations . . . . . . . . . . . . . 118
6.1.2 Computation with Matrices . . . . . . . . . . . . . . 121
6.1.3 Exercises . . . . . . . . . . . . . . . . . . . . . . . . 122
6.2 The Inverse of a Matrix . . . . . . . . . . . . . . . . . . . . . 123
6.2.1 A Number Called the Determinant . . . . . . . . . . 127
Contents xi
6.2.2 Rank and Trace of a Matrix . . . . . . . . . . . . . . 132
6.2.3 Another Way to Find the Inverse of a Matrix . . . . . 133
6.2.4 Exercises . . . . . . . . . . . . . . . . . . . . . . . . 135
6.3 Solving Systems of Linear Equations Using Matrix Algebra . . 137
6.3.1 Cramer’s Rule . . . . . . . . . . . . . . . . . . . . . 139
6.3.2 Exercises . . . . . . . . . . . . . . . . . . . . . . . . 142
7 Advanced Topics in Matrix Algebra . . . . . . . . . . . . . . . . . 143
7.1 Quadratic Forms and Positive and Negative
Definite Matrices . . . . . . . . . . . . . . . . . . . . . . . . 143
7.1.1 Exercises . . . . . . . . . . . . . . . . . . . . . . . . 146
7.2 Generalized Inverse of a Matrix . . . . . . . . . . . . . . . . . 147
7.2.1 Exercises . . . . . . . . . . . . . . . . . . . . . . . . 150
7.3 Orthogonal Matrices . . . . . . . . . . . . . . . . . . . . . . 150
7.3.1 Orthogonal Projection . . . . . . . . . . . . . . . . . 150
7.3.2 Orthogonal Complement of a Matrix . . . . . . . . . 152
7.3.3 Exercises . . . . . . . . . . . . . . . . . . . . . . . . 153
7.4 Eigenvalues and Eigenvectors . . . . . . . . . . . . . . . . . . 153
7.4.1 Complex Eigenvalues . . . . . . . . . . . . . . . . . 159
7.4.2 Repeated Eigenvalues . . . . . . . . . . . . . . . . . 160
7.4.3 Eigenvalues and the Determinant and Trace of
a Matrix . . . . . . . . . . . . . . . . . . . . . . . . 164
7.4.4 Exercises . . . . . . . . . . . . . . . . . . . . . . . . 166
7.5 Factorization of Symmetric Matrices . . . . . . . . . . . . . . 167
7.5.1 Some Interesting Properties of Symmetric Matrices . 167
7.5.2 Factorization of Matrix with Real Distinct Roots . . . 170
7.5.3 Factorization of a Positive Definite Matrix . . . . . . 172
7.5.4 Exercises . . . . . . . . . . . . . . . . . . . . . . . . 176
7.6 LU Factorization of a Square Matrix . . . . . . . . . . . . . . 176
7.6.1 Cholesky Factorization . . . . . . . . . . . . . . . . 181
7.6.2 Exercises . . . . . . . . . . . . . . . . . . . . . . . . 182
7.7 Kronecker Product and Vec Operator . . . . . . . . . . . . . . 183
7.7.1 Vectorization of a Matrix . . . . . . . . . . . . . . . 185
7.7.2 Exercises . . . . . . . . . . . . . . . . . . . . . . . . 185
Part III Calculus
8 Differentiation: Functions of One Variable . . . . . . . . . . . . . 189
8.1 Marginal Analysis in Economics . . . . . . . . . . . . . . . . 189
8.1.1 Marginal Concepts and Derivatives . . . . . . . . . . 190
8.1.2 Comparative Static Analysis . . . . . . . . . . . . . . 192
8.1.3 Exercises . . . . . . . . . . . . . . . . . . . . . . . . 193
8.2 Limit and Continuity . . . . . . . . . . . . . . . . . . . . . . 194
8.2.1 Limit . . . . . . . . . . . . . . . . . . . . . . . . . . 194
8.2.2 Continuity . . . . . . . . . . . . . . . . . . . . . . . 196
8.2.3 Exercises . . . . . . . . . . . . . . . . . . . . . . . . 198
xii Contents
8.3 Derivatives . . . . . . . . . . . . . . . . . . . . . . . . . . . 198
8.3.1 Geometric Representation of Derivative . . . . . . . . 200
8.3.2 Differentiability . . . . . . . . . . . . . . . . . . . . 201
8.3.3 Rules of Differentiation . . . . . . . . . . . . . . . . 204
8.3.4 Properties of Derivatives . . . . . . . . . . . . . . . . 207
8.3.5 l’Hôpital’s Rule . . . . . . . . . . . . . . . . . . . . 214
8.3.6 Exercises . . . . . . . . . . . . . . . . . . . . . . . . 215
8.4 Monotonic Functions and the Inverse Rule . . . . . . . . . . . 216
8.4.1 Exercises . . . . . . . . . . . . . . . . . . . . . . . . 219
8.5 Second- and Higher-Order Derivatives . . . . . . . . . . . . . 220
8.5.1 Exercises . . . . . . . . . . . . . . . . . . . . . . . . 221
8.6 Differential . . . . . . . . . . . . . . . . . . . . . . . . . . . 221
8.6.1 Second- and Higher-Order Differentials . . . . . . . . 223
8.6.2 Exercises . . . . . . . . . . . . . . . . . . . . . . . . 224
8.7 Computer and Numerical Differentiation . . . . . . . . . . . . 224
8.7.1 Computer Differentiation . . . . . . . . . . . . . . . 224
8.7.2 Numerical Differentiation . . . . . . . . . . . . . . . 225
8.7.3 Exercises . . . . . . . . . . . . . . . . . . . . . . . . 226
9 Differentiation: Functions of Several Variables . . . . . . . . . . . 227
9.1 Partial Differentiation . . . . . . . . . . . . . . . . . . . . . . 227
9.1.1 Second-Order Partial Derivatives . . . . . . . . . . . 230
9.1.2 Differentiation of Functions of Several
Variables Using Computer . . . . . . . . . . . . . . . 232
9.1.3 The Gradient and Hessian . . . . . . . . . . . . . . . 232
9.1.4 Exercises . . . . . . . . . . . . . . . . . . . . . . . . 234
9.2 Differential and Total Derivative . . . . . . . . . . . . . . . . 235
9.2.1 Differential . . . . . . . . . . . . . . . . . . . . . . . 235
9.2.2 Total Derivative . . . . . . . . . . . . . . . . . . . . 237
9.2.3 Exercises . . . . . . . . . . . . . . . . . . . . . . . . 240
9.3 Homogeneous Functions and the Euler Theorem . . . . . . . . 240
9.3.1 Exercises . . . . . . . . . . . . . . . . . . . . . . . . 243
9.4 Implicit Function Theorem . . . . . . . . . . . . . . . . . . . 244
9.4.1 Exercises . . . . . . . . . . . . . . . . . . . . . . . . 248
9.5 Differentiating Systems of Equations . . . . . . . . . . . . . . 248
9.5.1 The Jacobian and Independence of Nonlinear Functions 248
9.5.2 Differentiating Several Functions . . . . . . . . . . . 250
9.5.3 Exercises . . . . . . . . . . . . . . . . . . . . . . . . 255
10 The Taylor Series and Its Applications . . . . . . . . . . . . . . . 257
10.1 The Taylor Expansion . . . . . . . . . . . . . . . . . . . . . . 257
10.1.1 Exercises . . . . . . . . . . . . . . . . . . . . . . . . 266
10.2 The Remainder and the Precision of Approximation . . . . . . 267
10.2.1 Exercises . . . . . . . . . . . . . . . . . . . . . . . . 270
10.3 Finding the Roots of an Equation . . . . . . . . . . . . . . . . 270
10.3.1 Iterative Methods . . . . . . . . . . . . . . . . . . . 270
Contents xiii
10.3.2 The Bisection Method . . . . . . . . . . . . . . . . . 272
10.3.3 Newton’s Method . . . . . . . . . . . . . . . . . . . 273
10.3.4 Exercises . . . . . . . . . . . . . . . . . . . . . . . . 276
10.4 Taylor Expansion of Functions of Several Variables . . . . . . 276
10.4.1 Exercises . . . . . . . . . . . . . . . . . . . . . . . . 279
11 Integration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 281
11.1 The Indefinite Integral . . . . . . . . . . . . . . . . . . . . . . 282
11.1.1 Rules of Integration . . . . . . . . . . . . . . . . . . 283
11.1.2 Change of Variable . . . . . . . . . . . . . . . . . . . 285
11.1.3 Integration by Parts . . . . . . . . . . . . . . . . . . 287
11.1.4 Exercises . . . . . . . . . . . . . . . . . . . . . . . . 289
11.2 The Definite Integral . . . . . . . . . . . . . . . . . . . . . . 289
11.2.1 Properties of Definite Integrals . . . . . . . . . . . . 294
11.2.2 Rules of Integration for the Definite Integral . . . . . 298
11.2.3 Change of Variable . . . . . . . . . . . . . . . . . . . 299
11.2.4 Integration by Parts . . . . . . . . . . . . . . . . . . 300
11.2.5 Riemann-Stieltjes Integral . . . . . . . . . . . . . . . 304
11.2.6 Exercises . . . . . . . . . . . . . . . . . . . . . . . . 306
11.3 Computer and Numerical Integration . . . . . . . . . . . . . . 306
11.3.1 Computer Integration . . . . . . . . . . . . . . . . . 306
11.4 Numerical Integration . . . . . . . . . . . . . . . . . . . . . . 307
11.4.1 The Trapezoid Method . . . . . . . . . . . . . . . . . 308
11.4.2 The Lagrange Interpolation Formula . . . . . . . . . 310
11.4.3 Newton-Cotes Method . . . . . . . . . . . . . . . . . 312
11.4.4 Simpson’s Method . . . . . . . . . . . . . . . . . . . 313
11.4.5 Exercises . . . . . . . . . . . . . . . . . . . . . . . . 315
11.5 Special Functions . . . . . . . . . . . . . . . . . . . . . . . . 316
11.5.1 Exercises . . . . . . . . . . . . . . . . . . . . . . . . 316
11.6 The Derivative of an Integral . . . . . . . . . . . . . . . . . . 317
11.6.1 Exercises . . . . . . . . . . . . . . . . . . . . . . . . 320
Part IV Optimization
12 Static Optimization . . . . . . . . . . . . . . . . . . . . . . . . . . 323
12.1 Maxima and Minima of Functions of One Variable . . . . . . 324
12.1.1 Inflection Point . . . . . . . . . . . . . . . . . . . . . 331
12.1.2 Exercises . . . . . . . . . . . . . . . . . . . . . . . . 333
12.2 Unconstrained Optima of Functions of Several Variables . . . 334
12.2.1 Convex and Concave Functions . . . . . . . . . . . . 338
12.2.2 Quasi-convex and Quasi-concave Functions . . . . . 341
12.2.3 Exercises . . . . . . . . . . . . . . . . . . . . . . . . 342
12.3 Numerical Optimization . . . . . . . . . . . . . . . . . . . . . 343
12.3.1 Steepest Descent . . . . . . . . . . . . . . . . . . . . 343
12.3.2 Golden Section Method . . . . . . . . . . . . . . . . 344
12.3.3 Newton Method . . . . . . . . . . . . . . . . . . . . 344
xiv Contents
12.3.4 Matlab Functions . . . . . . . . . . . . . . . . . . . 345
12.3.5 Exercises . . . . . . . . . . . . . . . . . . . . . . . . 346
13 Constrained Optimization . . . . . . . . . . . . . . . . . . . . . . 347
13.1 Optimization with Equality Constraints . . . . . . . . . . . . 347
13.1.1 The Nature of Constrained Optima
and the Significance of λ . . . . . . . . . . . . . . . . 354
13.1.2 Exercises . . . . . . . . . . . . . . . . . . . . . . . . 354
13.2 Value Function . . . . . . . . . . . . . . . . . . . . . . . . . 355
13.2.1 Exercises . . . . . . . . . . . . . . . . . . . . . . . . 362
13.3 Second-Order Conditions and Comparative Static . . . . . . . 362
13.3.1 Exercises . . . . . . . . . . . . . . . . . . . . . . . . 368
13.4 Inequality Constraints and Karush-Kuhn-Tucker Conditions . . 368
13.4.1 Duality . . . . . . . . . . . . . . . . . . . . . . . . . 372
13.4.2 Exercises . . . . . . . . . . . . . . . . . . . . . . . . 375
14 Dynamic Optimization . . . . . . . . . . . . . . . . . . . . . . . . 377
14.1 Dynamic Analysis in Economics . . . . . . . . . . . . . . . . 377
14.2 The Control Problem . . . . . . . . . . . . . . . . . . . . . . 379
14.2.1 The Functional and Its Derivative . . . . . . . . . . . 381
14.3 Calculus of Variations . . . . . . . . . . . . . . . . . . . . . . 384
14.3.1 The Euler Equation . . . . . . . . . . . . . . . . . . 386
14.3.2 Second-Order Conditions . . . . . . . . . . . . . . . 389
14.3.3 Generalizing the Calculus of Variations . . . . . . . . 390
14.3.4 Exercises . . . . . . . . . . . . . . . . . . . . . . . . 391
14.4 Dynamic Programming . . . . . . . . . . . . . . . . . . . . . 391
14.4.1 Exercises . . . . . . . . . . . . . . . . . . . . . . . . 396
14.5 The Maximum Principle . . . . . . . . . . . . . . . . . . . . 397
14.5.1 Necessary and Sufficient Conditions . . . . . . . . . 405
14.5.2 Exercises . . . . . . . . . . . . . . . . . . . . . . . . 405
Part V Differential and Difference Equations
15 Differential Equations . . . . . . . . . . . . . . . . . . . . . . . . 409
15.1 Examples of Continuous Time Dynamic Economic Models . . 409
15.2 An Overview . . . . . . . . . . . . . . . . . . . . . . . . . . 412
15.2.1 Initial Value Problem . . . . . . . . . . . . . . . . . 414
15.2.2 Existence and Uniqueness of Solutions . . . . . . . . 416
15.2.3 Equilibrium and Stability . . . . . . . . . . . . . . . 417
15.3 First-Order Linear Differential Equations . . . . . . . . . . . . 418
15.3.1 Variable Coefficient Equations . . . . . . . . . . . . 420
15.3.2 Particular Integral, the Method
of Undetermined Coefficients . . . . . . . . . . . . . 421
15.3.3 Separable Equations . . . . . . . . . . . . . . . . . . 424
15.3.4 Exact Differential Equations . . . . . . . . . . . . . . 426
15.3.5 Integrating Factor . . . . . . . . . . . . . . . . . . . 430
15.3.6 Exercises . . . . . . . . . . . . . . . . . . . . . . . . 433