Thư viện tri thức trực tuyến
Kho tài liệu với 50,000+ tài liệu học thuật
© 2023 Siêu thị PDF - Kho tài liệu học thuật hàng đầu Việt Nam

Fluid mechanics for engineers : A graduate textbook
Nội dung xem thử
Mô tả chi tiết
Fluid Mechanics for Engineers
Meinhard T. Schobeiri
Fluid Mechanics for
Engineers
A Graduate Textbook
ABC
Prof.Dr.-Ing. Meinhard T. Schobeiri
Department of Mechanical Engineering
Texas A&M University
College Station TX, 77843-3123
USA
E-mail: [email protected]
ISBN 978-3-642-11593-6 e-ISBN 978-3-642-11594-3
DOI 10.1007/978-3-642-11594-3
Library of Congress Control Number: 2009943377
c 2010 Springer-Verlag Berlin Heidelberg
This work is subject to copyright. All rights are reserved, whether the whole or part of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilm or in any other way, and storage in data banks. Duplication of this publication or parts thereof is permitted only under the provisions of the German
Copyright Law of September 9, 1965, in its current version, and permission for use must always
be obtained from Springer. Violations are liable to prosecution under the German Copyright Law.
The use of general descriptive names, registered names, trademarks, etc. in this publication does
not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
Typesetting: Camera-ready by author, data conversion by Markus Richter, Heidelberg
Printed in acid-free paper
987654321
springer.com
Preface
The contents of this book covers the material required in the Fluid Mechanics
Graduate Core Course (MEEN-621) and in Advanced Fluid Mechanics, a Ph.D-level
elective course (MEEN-622), both of which I have been teaching at Texas A&M
University for the past two decades. While there are numerous undergraduate fluid
mechanics texts on the market for engineering students and instructors to choose
from, there are only limited texts that comprehensively address the particular needs
of graduate engineering fluid mechanics courses. To complement the lecture
materials, the instructors more often recommend several texts, each of which treats
special topics of fluid mechanics. This circumstance and the need to have a textbook
that covers the materials needed in the above courses gave the impetus to provide the
graduate engineering community with a coherent textbook that comprehensively
addresses their needs for an advanced fluid mechanics text. Although this text book
is primarily aimed at mechanical engineering students, it is equally suitable for
aerospace engineering, civil engineering, other engineering disciplines, and especially
those practicing professionals who perform CFD-simulation on a routine basis and
would like to know more about the underlying physics of the commercial codes they
use. Furthermore, it is suitable for self study, provided that the reader has a sufficient
knowledge of calculus and differential equations.
In the past, because of the lack of advanced computational capability, the subject
of fluid mechanics was artificially subdivided into inviscid, viscous (laminar,
turbulent), incompressible, compressible, subsonic, supersonic and hypersonic flows.
With today’s state of computation, there is no need for this subdivision. The motion
of a fluid is accurately described by the Navier-Stokes equations. These equations
require modeling of the relationship between the stress and deformation tensor for
linear and nonlinear fluids only. Efforts by many researchers around the globe are
aimed at directly solving the Navier-Stokes equations (DNS) without introducing the
Reynolds stress tensor, which is the result of an artificial decomposition of the
velocity field into a mean and fluctuating part. The use of DNS for engineering
applications seems to be out of reach because the computation time and resources
required to perform a DNS-calculation are excessive at this time. Considering this
constraining circumstance, engineers have to resort to Navier-Stokes solvers that are
based on Reynolds decomposition. It requires modeling of the transition process and
the Reynolds stress tensor to which three chapters of this book are dedicated.
The book is structured in such a way that all conservation laws, their derivatives
and related equations are written in coordinate invariant forms. This type of structure
enables the reader to use Cartesian, orthogonal curvilinear, or non-orthogonal body
fitted coordinate systems. The coordinate invariant equations are then decomposed
VI Preface
into components by utilizing the index notation of the corresponding coordinate
systems. The use of a coordinate invariant form is particularly essential in
understanding the underlying physics of the turbulence, its implementation into the
Navier-Stokes equations, and the necessary mathematical manipulations to arrive at
different correlations. The resulting correlations are the basis for the following
turbulence modeling. It is worth noting that in standard textbooks of turbulence, index
notations are used throughout with almost no explanation of how they were brought
about. This circumstance adds to the difficulty in understanding the nature of
turbulence by readers who are freshly exposed to the problematics of turbulence.
Introducing the coordinate invariant approach makes it easier for the reader to follow
step-by-step mathematical manipulations, arrive at the index notation and the
component decomposition. This, however, requires the knowledge of tensor analysis.
Chapter 2 gives a concise overview of the tensor analysis essential for describing the
conservation laws in coordinate invariant form, how to accomplish the index notation,
and the component decomposition into different coordinate systems.
Using the tensor analytical knowledge gained from Chapter 2, it is rigorously
applied to the following chapters. In Chapter 3, that deals with the kinematics of flow
motion, the Jacobian transformation describes in detail how a time dependent volume
integral is treated. In Chapter 4 and 5 conservation laws of fluid mechanics and
thermodynamics are treated in differential and integral forms. These chapters are the
basis for what follows in Chapters 7, 8, 9, 10 and 11 which exclusively deal with
viscous flows. Before discussing the latter, the special case of inviscid flows is
presented where the order of magnitude of a viscosity force compared with the
convective forces are neglected. The potential flow, a special case of inviscid flow
characterized by zero vorticity , exhibited a major topic in fluid mechanics
in pre-CFD era. In recent years, however, its relevance has been diminished. Despite
this fact, I presented it in this book for two reasons. (1) Despite its major short
comings to describe the flow pattern directly close to the surface, because it does not
satisfy the no-slip condition, it reflects a reasonably good picture of the flow outside
the boundary layer. (2) Combined with the boundary layer calculation procedure, it
helps acquiring a reasonably accurate picture of the flow field outside and inside the
boundary layer. This, of course, is valid as long as the boundary layer is not
separated. For calculating the potential flows, conformal transformation is used where
the necessary basics are presented in Chapter 6, which is concluded by discussing
different vorticity theorems.
Particular issues of laminar flow at different pressure gradients associated with
the flow separation in conjunction with the wall curvature constitute the content of
Chapter 7 which seamlessly merges into Chapter 8 that starts with the stability of
laminar, followed by laminar-turbulent transition, intermittency function and its
implementation into Navier-Stokes. Averaging the Navier-Stokes equation that
includes the intermittency function leading to the Reynolds averaged Navier-Stokes
equation (RANS), concludes Chapter 8. In discussing the RANS-equations, two
quantities have to be accurately modeled. One is the intermittency function, and the
other is the Reynolds stress tensor with its nine components. Inaccurate modeling of
these two quantities leads to a multiplicative error of their product. The transition was
already discussed in Chapter 8 but the Reynolds stress tensor remains to be modeled.
Preface VII
This, however, requires the knowledge and understanding of turbulence before
attempts are made to model it. In Chapter 9, I tried to present the quintessence of
turbulence required for a graduate level mechanical engineering course and to
critically discuss several different models. While Chapter 9 predominantly deals with
the wall turbulence, Chapter 10 treats different aspects of free turbulent flows and
their general relevance in engineering. Among different free turbulent flows, the
process of development and decay of wakes under positive, zero, and negative
pressure gradients is of particular engineering relevance. With the aid of the
characteristics developed in Chapter 10, this process of wake development and decay
can be described accurately.
Chapter 11 is entirely dedicated to the physics of laminar, transitional and
turbulent boundary layers. This topic has been of particular relevance to the
engineering community. It is treated in integral and differential forms and applied to
laminar, transitional, turbulent boundary layers, and heat transfer.
Chapter 12 deals with the compressible flow. At first glance, this topic seems to
be dissonant with the rest of the book. Despite this, I decided to integrate it into this
book for two reasons: (1) Due to a complete change of the flow pattern from subsonic
to supersonic, associated with a system of oblique shocks makes it imperative to
present this topic in an advanced engineering fluid text; (2) Unsteady compressible
flow with moving shockwaves occurs frequently in many engines such as transonic
turbines and compressors, operating in off-design and even design conditions. A
simple example is the shock tube, where the shock front hits the one end of the tube
to be reflected to the other end. A set of steady state conservation laws does not
describe this unsteady phenomenon. An entire set of unsteady differential equations
must be called upon which is presented in Chapter 12. Arriving at this point, the
students need to know the basics of gas dynamics. I had two options, either refer the
reader to existing gas dynamics textbooks, or present a concise account of what is
most essential in following this chapter. I decided on the second option.
At the end of each chapter, there is a section that entails problems and projects.
In selecting the problems, I carefully selected those from the book Fluid Mechanics
Problems and Solutions by Professor Spurk of Technische Universität Darmstadt
which I translated in 1997. This book contains a number of highly advanced problems
followed by very detailed solutions. I strongly recommend this book to those
instructors who are in charge of teaching graduate fluid mechanics as a source of
advanced problems. My sincere thanks go to Professor Spurk, my former Co-Advisor,
for giving me the permission . Besides the problems, a number of demanding projects
are presented that are aimed at getting the readers involved in solving CFD-type of
problems. In the course of teaching the advanced Fluid Mechanics course MEEN622, I insist that the students present the project solution in the form of a technical
paper in the format required by ASME Transactions, Journal of Fluid Engineering.
In typing several thousand equations, errors may occur. I tried hard to eliminate
typing, spelling and other errors, but I have no doubt that some remain to be found
by readers. In this case, I sincerely appreciate the reader notifying me of any mistakes
found; the electronic address is given below. I also welcome any comments or
suggestions regarding the improvement of future editions of the book.
VIII Preface
My sincere thanks are due to many fine individuals and institutions. First and
foremost, I would like to thank the faculty of the Technische Universität Darmstadt
from whom I received my entire engineering education. I finalized major chapters of
the manuscript during my sabbatical in Germany where I received the Alexander von
Humboldt Prize. I am indebted to the Alexander von Humboldt Foundation for this
Prize and the material support for my research sabbatical in Germany. My thanks are
extended to Professor Bernd Stoffel, Professor Ditmar Hennecke, and Dipl. Ing.
Bernd Matyschok for providing me with a very congenial working environment.
I am also indebted to TAMU administration for partially supporting my
sabbatical which helped me in finalizing the book. Special thanks are due to Mrs.
Mahalia Nix who helped me in cross-referencing the equations and figures and
rendered other editorial assistance.
Last, but not least, my special thanks go to my family, Susan and Wilfried for
their support throughout this endeavor.
M.T. Schobeiri
August 2009
College Station, Texas
Contents
1 Introduction ....................................... 1
1.1 Continuum Hypothesis .................................... 1
1.2 Molecular Viscosity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.3 Flow Classification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.3.1 Velocity Pattern: Laminar, Intermittent, Turbulent Flow ..... 4
1.3.2 Change of Density, Incompressible, Compressible Flow . . . . . . 8
1.3.3 Statistically Steady Flow, Unsteady Flow . . . . . . . . . . . . . . . . . 9
1.4 Shear-Deformation Behavior of Fluids . . . . . . . . . . . . . . . . . . . . . . . . 9
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2 Vector and Tensor Analysis, Applications to
Fluid Mechanics ................................... 11
2.1 Tensors in Three-Dimensional Euclidean Space . . . . . . . . . . . . . . . . 11
2.1.1 Index Notation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.2 Vector Operations: Scalar, Vector and Tensor Products . . . . . . . . . . 13
2.2.1 Scalar Product . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.2.2 Vector or Cross Product . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.2.3 Tensor Product . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.3 Contraction of Tensors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.4 Differential Operators in Fluid Mechanics . . . . . . . . . . . . . . . . . . . . . 15
2.4.1 Substantial Derivatives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
2.4.2 Differential Operator / . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
2.5 Operator / Applied to Different Functions . . . . . . . . . . . . . . . . . . . . 19
2.5.1 Scalar Product of / and V . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
2.5.2 Vector Product . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
2.5.3 Tensor Product of / and V . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
2.5.4 Scalar Product of / and a Second Order Tensor . . . . . . . . . . . 21
2.5.5 Eigenvalue and Eigenvector of a Second Order Tensor . . . . . . 25
Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
X Contents
3 Kinematics of Fluid Motion ......................... 31
3.1 Material and Spatial Description of the Flow Field . . . . . . . . . . . . . . 31
3.1.1 Material Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
3.1.2 Jacobian Transformation Function and
Its Material Derivative . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
3.1.3 Velocity, Acceleration of Material Points . . . . . . . . . . . . . . . . 36
3.1.4 Spatial Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
3.2 Translation, Deformation, Rotation . . . . . . . . . . . . . . . . . . . . . . . . . . 38
3.3 Reynolds Transport Theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
3.4 Pathline, Streamline, Streakline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
4 Differential Balances in Fluid Mechanics .............. 51
4.1 Mass Flow Balance in Stationary Frame of Reference . . . . . . . . . . . . 51
4.1.1 Incompressibility Condition . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
4.2 Differential Momentum Balance in Stationary Frame of Reference . 53
4.2.1 Relationship between Stress Tensor and Deformation Tensor 56
4.2.2 Navier-Stokes Equation of Motion . . . . . . . . . . . . . . . . . . . . . . 58
4.2.3 Special Case: Euler Equation of Motion . . . . . . . . . . . . . . . . . 60
4.3 Some Discussions on Navier-Stokes Equations . . . . . . . . . . . . . . . . . 63
4.4 Energy Balance in Stationary Frame of Reference . . . . . . . . . . . . . . . 64
4.4.1 Mechanical Energy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
4.4.2 Thermal Energy Balance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
4.4.3 Total Energy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
4.4.4 Entropy Balance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
4.5 Differential Balances in Rotating Frame of Reference . . . . . . . . . . . . 72
4.5.1 Velocity and Acceleration in Rotating Frame . . . . . . . . . . . . . 72
4.5.2 Continuity Equation in Rotating Frame of Reference . . . . . . . 73
4.5.3 Equation of Motion in Rotating Frame of Reference . . . . . . . . 74
4.5.4 Energy Equation in Rotating Frame of Reference . . . . . . . . . . 76
Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
5 Integral Balances in Fluid Mechanics ..................... 81
5.1 Mass Flow Balance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
5.2 Balance of Linear Momentum . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
5.3 Balance of Moment of Momentum . . . . . . . . . . . . . . . . . . . . . . . . . . 88
5.4 Balance of Energy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94
Contents XI
5.4.1 Energy Balance Special Case 1: Steady Flow . . . . . . . . . . . . . 99
5.4.2 Energy Balance Special Case 2: Steady Flow,
Constant Mass Flow . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99
5.5 Application of Energy Balance to Engineering Components . . . . . . 100
5.5.1 Application: Pipe, Diffuser, Nozzle . . . . . . . . . . . . . . . . . . . 100
5.5.2 Application: Combustion Chamber . . . . . . . . . . . . . . . . . . . . 101
5.5.3 Application: Turbo-shafts, Energy Extraction, Consumption 102
5.5.3.1 Uncooled Turbine . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103
5.5.3.2 Cooled Turbine . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104
5.5.3.3 Uncooled Compressor . . . . . . . . . . . . . . . . . . . . . . . . . 105
5.6 Irreversibility, Entropy Increase, Total Pressure Loss . . . . . . . . . . . 106
5.6.1 Application of Second Law to Engineering Components . . . . . 107
5.7 Theory of Thermal Turbomachinery Stages . . . . . . . . . . . . . . . . . . . 110
5.7.1 Energy Transfer in Turbomachinery Stages . . . . . . . . . . . . . . 110
5.7.2 Energy Transfer in Relative Systems . . . . . . . . . . . . . . . . . . . 111
5.7.3 Unified Treatment of Turbine and Compressor Stages . . . . . 112
5.8 Dimensionless Stage Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . 115
5.8.1 Simple Radial Equilibrium to Determine r . . . . . . . . . . . . . . 117
5.8.2 Effect of Degree of Reaction on the Stage Configuration . . . 121
5.8.3 Effect of Stage Load Coefficient on Stage Power . . . . . . . . . 121
5.9 Unified Description of a Turbomachinery Stage . . . . . . . . . . . . . . . 122
5.9.1 Unified Description of Stage with Constant Mean Diameter . 123
5.10 Turbine and Compressor Cascade Flow Forces . . . . . . . . . . . . . . . . 124
5.10.1 Blade Force in an Inviscid Flow Field . . . . . . . . . . . . . . . . . . 124
5.10.2 Blade Forces in a Viscous Flow Field . . . . . . . . . . . . . . . . . . 128
5.10.3 Effect of Solidity on Blade Profile Losses . . . . . . . . . . . . . . . 134
Problems, Project . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138
6 Inviscid Flows .................................... 139
6.1 Incompressible Potential Flows . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141
6.2 Complex Potential for Plane Flows . . . . . . . . . . . . . . . . . . . . . . . . . 142
6.2.1 Elements of Potential Flow . . . . . . . . . . . . . . . . . . . . . . . . . . 145
6.2.1.1 Translational Flows . . . . . . . . . . . . . . . . . . . . . . . . . . 145
6.2.1.2 Sources and Sinks . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146
6.2.1.3 Potential Vortex . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146
6.2.1.4 Dipole Flow . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147
6.2.1.5 Corner Flow . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149
6.3 Superposition of Potential Flow Elements . . . . . . . . . . . . . . . . . . . . 150
XII Contents
6.3.1 Superposition of a Uniform Flow and a Source . . . . . . . . . . 150
6.3.2 Superposition of a Translational Flow and a Dipole . . . . . . . 151
6.3.3 Superposition of a Translational Flow, a Dipole and a Vortex 154
6.3.4 Superposition of a Uniform Flow, Source, and Sink . . . . . . . 159
6.3.5 Superposition of a Source and a Vortex . . . . . . . . . . . . . . . . 160
6.4 Blasius Theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 161
6.5 Kutta-Joukowski Theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163
6.6 Conformal Transformation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 167
6.6.1 Conformal Transformation, Basic Principles . . . . . . . . . . . . . 167
6.6.2 Kutta-Joukowsky Transformation . . . . . . . . . . . . . . . . . . . . . 169
6.6.3 Joukowsky Transformation . . . . . . . . . . . . . . . . . . . . . . . . . . 170
6.6.3.1 Circle-Flat Plate Transformation . . . . . . . . . . . . . . . . 171
6.6.3.2 Circle-Ellipse Transformation . . . . . . . . . . . . . . . . . . 172
6.6.3.3 Circle-Symmetric Airfoil Transformation . . . . . . . . . . 172
6.6.3.4 Circle-Cambered Airfoil Transformation . . . . . . . . . . 173
6.6.3.5 Circulation, Lift, Kutta Condition . . . . . . . . . . . . . . . . 175
6.7 Vortex Theorems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 179
6.7.1 Thomson Theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 179
6.7.2 Generation of Circulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 184
6.7.3 Helmholtz Theorems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 185
6.7.4 Vortex Induced Velocity Field, Law of Bio -Savart . . . . . . . . 190
6.7.5 Induced Drag Force . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 195
Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 197
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 198
7 Viscous Laminar Flow ............................ 201
7.1 Steady Viscous Flow through a Curved Channel . . . . . . . . . . . . . . . 201
7.1.1 Conservation Laws . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 202
7.1.2 Solution of the Navier-Stokes Equation . . . . . . . . . . . . . . . . . 205
7.1.3 Curved Channel, Negative Pressure Gradient . . . . . . . . . . . . 207
7.1.4 Curved Channel, Positive Pressure Gradient . . . . . . . . . . . . . 208
7.1.5 Radial Flow, Positive Pressure Gradient . . . . . . . . . . . . . . . . 209
7.2 Temperature Distribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 210
7.2.1 Solution of Energy Equation . . . . . . . . . . . . . . . . . . . . . . . . . 211
7.2.2 Curved Channel, Negative Pressure Gradient . . . . . . . . . . . . 213
7.2.3 Curved Channel, Positive Pressure Gradient . . . . . . . . . . . . . 213
7.2.4 Radial Flow, Positive Pressure Gradient . . . . . . . . . . . . . . . . 214
7.3 Steady Parallel Flows . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 216
7.3.1 Couette Flow between Two Parallel Walls . . . . . . . . . . . . . . 216
Contents XIII
7.3.2 Couette Flow between Two Concentric Cylinders . . . . . . . . . 218
7.3.3 Hagen-Poiseuille Flow . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 220
7.4 Unsteady Laminar Flows . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 222
7.4.1 Flow Near Oscillating Flat Plate, Stokes-Rayleigh Problem . 223
7.4.2 Influence of Viscosity on Vortex Decay . . . . . . . . . . . . . . . . 226
Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 228
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 232
8 Laminar-Turbulent Transition ......................... 233
8.1 Stability of Laminar Flow . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 233
8.2 Laminar-Turbulent Transition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 234
8.3 Stability of Laminar Flows . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 237
8.3.1 Stability of Small Disturbances . . . . . . . . . . . . . . . . . . . . . . . 237
8.3.2 The Orr-Sommerfeld Stability Equation . . . . . . . . . . . . . . . . 239
8.3.3 Orr-Sommerfeld Eigenvalue Problem . . . . . . . . . . . . . . . . . . 241
8.3.4 Solution of Orr-Sommerfeld Equation . . . . . . . . . . . . 243
8.3.5 Numerical Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 246
8.4 Physics of an Intermittent Flow, Transition . . . . . . . . . . . . . . . . . . . . 247
8.4.1 Identification of Intermittent Behavior of Statistically
Steady Flows . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 249
8.4.2 Turbulent/non-turbulent Decisions . . . . . . . . . . . . . . . . . . . . . 250
8.4.3 Intermittency Modeling for Steady Flow at Zero Pressure
Gradient . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 253
8.4.4 Identification of Intermittent Behavior of Periodic
Unsteady Flows . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 255
8.4.5 Intermittency Modeling for Periodic Unsteady Flow . . . . . . 258
8.5 Implementation of Intermittency into Navier Stokes Equations . . . . 261
8.5.1 Reynolds-Averaged Equations for Fully Turbulent Flow . . . 261
8.5.2 Intermittency Implementation in RANS . . . . . . . . . . . . . . . . . 265
Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 267
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 268
9 Turbulent Flow, Modeling .............................. 271
9.1 Fundamentals of Turbulent Flows . . . . . . . . . . . . . . . . . . . . . . . . . . 271
9.1.1 Type of Turbulence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 273
9.1.2 Correlations, Length and Time Scales . . . . . . . . . . . . . . . . . . 274
9.1.3 Spectral Representation of Turbulent Flows . . . . . . . . . . . . . 281
9.1.4 Spectral Tensor, Energy Spectral Function . . . . . . . . . . . . . . 284
9.2 Averaging Fundamental Equations of Turbulent Flow . . . . . . . . . . 286
XIV Contents
9.2.1 Averaging Conservation Equations . . . . . . . . . . . . . . . . . . . . 287
9.2.1.1 Averaging the Continuity Equation . . . . . . . . . . . . . . 287
9.2.1.2 Averaging the Navier-Stokes Equation . . . . . . . . . . . . 287
9.2.1.3 Averaging the Mechanical Energy Equation . . . . . . . 288
9.2.1.4 Averaging the Thermal Energy Equation . . . . . . . . . . 289
9.2.1.5 Averaging the Total Enthalpy Equation . . . . . . . . . . . 291
9.2.1.6 Quantities Resulting from Averaging to be Modeled . 294
9.2.2 Equation of Turbulence Kinetic Energy . . . . . . . . . . . . . . . . . 296
9.2.3 Equation of Dissipation of Kinetic Energy . . . . . . . . . . . . . . . 302
9.3 Turbulence Modeling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 303
9.3.1 Algebraic Model: Prandtl Mixing Length Hypothesis . . . . . . 304
9.3.2 Algebraic Model: Cebeci-Smith Model . . . . . . . . . . . . . . . . . 310
9.3.3 Baldwin-Lomax Algebraic Model . . . . . . . . . . . . . . . . . . . . . 311
9.3.4 One- Equation Model by Prandtl . . . . . . . . . . . . . . . . . . . . . . 312
9.3.5 Two-Equation Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 313
9.3.5.1 Two-Equation k-g Model . . . . . . . . . . . . . . . . . . . . . . 313
9.3.5.2 Two-Equation k-ω-Model . . . . . . . . . . . . . . . . . . . . . . 315
9.3.5.3 Two-Equation k-ω-SST-Model . . . . . . . . . . . . . . . . . . 316
9.3.5.4 Two Examples of Two-Equation Models . . . . . . . . . . 318
9.4 Grid Turbulence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 321
Problems and Projects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 323
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 325
10 Free Turbulent Flow .............................. 327
10.1 Types of Free Turbulent Flows . . . . . . . . . . . . . . . . . . . . . . . . . . . . 327
10.2 Fundamentals Equations of Free Turbulent Flows . . . . . . . . . . . . . . 328
10.3 Free Turbulent Flows at Zero-Pressure Gradient . . . . . . . . . . . . . . . 329
10.3.1 Plane Free Jet Flows . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 333
10.3.2 Straight Wake at Zero Pressure Gradient . . . . . . . . . . . . . . . . 333
10.3.3 Free Jet Boundary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 338
10.4 Wake Flow at Non-zero Lateral Pressure Gradient . . . . . . . . . . . . . 340
10.4.1 Wake Flow in Engineering, Applications, General Remarks . 340
10.4.2 Theoretical Concept, an Inductive Approach . . . . . . . . . . . . . 344
10.4.3 Nondimensional Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . 347
10.4.4 Near Wake, Far Wake Regions . . . . . . . . . . . . . . . . . . . . . . . 349
10.4.5 Utilizing the Wake Characteristics . . . . . . . . . . . . . . . . . . . . 350
Computational Projects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 355
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 356
Contents XV
11 Boundary Layer Theory ................................ 357
11.1 Boundary Layer Approximations . . . . . . . . . . . . . . . . . . . . . . . . . . . 358
11.2 Exact Solutions of Laminar Boundary Layer Equations . . . . . . . . . 361
11.2.1 Laminar Boundary Layer, Flat Plate . . . . . . . . . . . . . . . . . . . 362
11.2.2 Wedge Flows . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 364
11.2.3 Polhausen Approximate Solution . . . . . . . . . . . . . . . . . . . . . . 368
11.3 Boundary Layer Theory Integral Method . . . . . . . . . . . . . . . . . . . . . 369
11.3.1 Boundary Layer Thicknesses . . . . . . . . . . . . . . . . . . . . . . . . . 369
11.3.2 Boundary Layer Integral Equation . . . . . . . . . . . . . . . . . . . . . 372
11.4 Turbulent Boundary Layers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 375
11.4.1 Universal Wall Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . 378
11.4.2 Velocity Defect Function . . . . . . . . . . . . . . . . . . . . . . . . . . . 381
11.5 Boundary Layer, Differential Treatment . . . . . . . . . . . . . . . . . . . . . 386
11.5.1 Solution of Boundary Layer Equations . . . . . . . . . . . . . . . . . 390
11.6 Measurement of Boundary Flow, Basic Techniques . . . . . . . . . . . . 391
11.6.1 Experimental Techniques . . . . . . . . . . . . . . . . . . . . . . . . . . . . 391
11.6.1.1 HWA Operation Modes, Calibration . . . . . . . . . . . . 391
11.6.1.2 HWA Averaging, Sampling Data . . . . . . . . . . . . . . 393
11.7 Examples: Calculations, Experiments . . . . . . . . . . . . . . . . . . . . . . . 394
11.7.1 Steady State Velocity Calculations . . . . . . . . . . . . . . . . . . . . 394
11.7.1.1 Experimental Verification . . . . . . . . . . . . . . . . . . . . . 396
11.7.1.2 Heat Transfer Calculation, Experiment . . . . . . . . . . . 397
11.7.2 Periodic Unsteady Inlet Flow Condition . . . . . . . . . . . . . . . . 398
11.7.2.1 Experimental Verification . . . . . . . . . . . . . . . . . . . . . 401
11.7.2.2 Heat Transfer Calculation, Experiment . . . . . . . . . . . 403
11.7.3 Application of ț-Ȧ Model to Boundary Layer . . . . . . . . . . . . 404
11.8 Parameters Affecting Boundary Layer . . . . . . . . . . . . . . . . . . . . . . 404
11.8.1 Parameter Variations, General Remarks . . . . . . . . . . . . . . . . 405
11.8.2 Effect of Periodic Unsteady Flow . . . . . . . . . . . . . . . . . . . . . . 409
Problems and Projects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 417
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 418
12 Compressible Flow ................................ 423
12.1 Steady Compressible Flow . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 423
12.1.1 Speed of Sound, Mach Number . . . . . . . . . . . . . . . . . . . . . . . 423
12.1.2 Fluid Density, Mach Number, Critical State . . . . . . . . . . . . . 425
12.1.3 Effect of Cross-Section Change on Mach Number . . . . . . . . 430
12.1.3.1 Flow through Channels with Constant Area . . . . . . 437
12.1.3.2 The Normal Shock Wave Relations . . . . . . . . . . . . . 445