Thư viện tri thức trực tuyến
Kho tài liệu với 50,000+ tài liệu học thuật
© 2023 Siêu thị PDF - Kho tài liệu học thuật hàng đầu Việt Nam

Fluid dynamics: theory, computation, and numerical simulation
Nội dung xem thử
Mô tả chi tiết
FLUID DYNAMICS:
THEORY, COMPUTATION,
AND NUMERICAL SIMULATION
Fluid Dynamics:
Theory, Computation,
Second Edition
C. Pozrikidis
and Numerical Simulation
USA
ISBN: 978-0-387-95869-9 e-ISBN: 978-0-387-95871-2
© Springer Science+Business Media, LLC 2009
Printed on acid-free paper
9 8 7 6 5 4 3 2 1
springer.com
All rights reserved. This work may not be translated or copied in whole or in part without the written
permission of the publisher (Springer Science+Business Media, LLC, 233 Spring Street, New York, NY
10013, USA), except for brief excerpts in connection with reviews or scholarly analysis. Use in connection
with any form of information storage and retrieval, electronic adaptation, computer software, or by similar
or dissimilar methodology now known or hereafter developed is forbidden.
The use in this publication of trade names, trademarks, service marks, and similar terms, even if they are
not identified as such, is not to be taken as an expression of opinion as to whether or not they are subject
to proprietary rights.
DOI: 10.1007/978-0-387-95871-2
C. Pozrikidis
University of Massachusetts
Library of Congress Control Number: 2008943356
Amherst, MA
Preface
Ready access to computers has defined a new era in teaching and learning. The
opportunity to extend the subject matter of traditional science and engineering
curricula into the realm of scientific computing has become not only desirable,
but also necessary. Thanks to portability and low overhead and operating cost,
experimentation by numerical simulation has become a viable substitute, and
occasionally the only alternative, to physical experimentation.
The new framework has necessitated the writing of texts and monographs
from a modern perspective that incorporates numerical and computer programming aspects as an integral part of the discourse. Under this modern directive,
methods, concepts, and ideas are presented in a unified fashion that motivates
and underlines the urgency of the new elements, but neither compromises nor
oversimplifies the rigor of the classical approach.
Interfacing fundamental concepts and practical methods of scientific computing can be implemented on different levels. In one approach, theory and
implementation are kept complementary and presented in a sequential fashion.
In another approach, the coupling involves deriving computational methods
and simulation algorithms, and translating equations into computer code instructions immediately following problem formulations. Seamlessly interjecting
methods of scientific computing in the traditional discourse offers a powerful
venue for developing analytical skills and obtaining physical insight.
The goal of this book is to offer an introductory course in traditional and
modern fluid mechanics, covering topics in a way that unifies theory, computation, computer programming, and numerical simulation. The approach is truly
introductory in that only a few prerequisites are required. The intended audience includes undergraduate and entry-level graduate students, as well as a
broader class of scientists, engineers, fluid dynamics and computational science
enthusiasts with a general interest in computing. This book should be especially
appealing to those who are making a first excursion into the world of numerical
computation and computational fluid dynamics (CFD) beyond the black-box
approach. This book should be an ideal text for an introductory course in fluid
mechanics and CFD.
The presentation of the material is distinguished by two features. First,
solution procedures and algorithms are developed immediately after problem
formulations are presented, and illustrative Matlab codes are discussed in the
text. Second, numerical methods are introduced on a need-to-know basis and
in order of increasing difficulty: function interpolation, function differentiation,
function integration, solution of algebraic equations, finite-difference methods,
etc. Computer problems at the end of each section require performing compuv
vi
tation and simulation to study the effect of various parameters determining a
flow.
In concert with the intended usage of this book as a stand-alone introductory text and as a tutorial on numerical fluid dynamics and scientific computing, only a few references are provided in the discussion. Instead, a selected
compilation of introductory, advanced, and specialized texts on fluid dynamics,
calculus, numerical methods, and computational fluid dynamics are listed in
appendix B. The reader who wishes to focus on a particular topic is directed
to these resources for further details.
A major feature of this book is the accompanying fluid dynamics software library Fdlib discussed in appendix A. The Fortran 77 and Matlab programs
of Fdlib explicitly illustrate how computational algorithms translate into computer instructions. The codes of Fdlib range from introductory to advanced,
and the topics span a broad range of applications discussed in this text: from
laminar channel flows, to vortex flows, to flow past airfoils. The Matlab codes
of Fdlib combine numerical computation, graphics display, data visualization
and animation.
To run the Fortran 77 codes of Fdlib, a Fortran 77 or Fortran 90
compiler is required. Free compilers are available thanks to the gnu foundation.
The input data is either entered from the keyboard or read from data files. The
output is recorded in output files in tabular form so that it can be read and
displayed using independent graphics, visualization, and animation applications
on any computer platform, including Matlab.
The second edition incorporates significant improvements in substance and
style. First, additional examples, solved problems, and new material have been
introduced for a more comprehensive treatment of the various topics. Examples
include surfactant transport and a brief introduction to compressible flow. Second, sample Matlab programs integrating numerical computation and graphics visualization are listed and discussed in the text. A Matlab primer explaining
basic programming procedures is presented in appendix C. Third, the revised
text refers to the latest version of Fdlib. These improvements should render the book an accessible introductory computational fluid dynamics (CFD)
resource.
The book Internet address is: http://dehesa.freeshell.org/FD2
I acknowledge with appreciation insightful comments by Keiko Nomura,
Siggi Thoroddsen, and Mark Blyth on the manuscript of the second edition.
C. Pozrikidis
Spring, 2009
Contents
Preface v
1 Introduction to Kinematics 1
1.1 Fluids and solids . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Fluid parcels and flow kinematics . . . . . . . . . . . . . . . . 2
1.3 Coordinates, velocity, and acceleration . . . . . . . . . . . . . 3
1.3.1 Cylindrical polar coordinates . . . . . . . . . . . . . . 6
1.3.2 Spherical polar coordinates . . . . . . . . . . . . . . . 9
1.3.3 Plane polar coordinates . . . . . . . . . . . . . . . . . 13
1.4 Fluid velocity . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
1.4.1 Velocity vector field, streamlines and stagnation points 18
1.5 Point particles and their trajectories . . . . . . . . . . . . . . 19
1.5.1 Path lines . . . . . . . . . . . . . . . . . . . . . . . . 20
1.5.2 Ordinary differential equations (ODEs) . . . . . . . . 20
1.5.3 Explicit Euler method . . . . . . . . . . . . . . . . . . 21
1.5.4 Modified Euler method . . . . . . . . . . . . . . . . . 23
1.5.5 Description in polar coordinates . . . . . . . . . . . . 26
1.5.6 Streaklines . . . . . . . . . . . . . . . . . . . . . . . . 27
1.6 Material surfaces and elementary motions . . . . . . . . . . . 28
1.6.1 Fluid parcel rotation . . . . . . . . . . . . . . . . . . 28
1.6.2 Fluid parcel deformation . . . . . . . . . . . . . . . . 29
1.6.3 Fluid parcel expansion . . . . . . . . . . . . . . . . . 30
1.6.4 Superposition of rotation, deformation, and expansion 31
1.6.5 Rotated coordinates . . . . . . . . . . . . . . . . . . . 32
1.6.6 Flow decomposition . . . . . . . . . . . . . . . . . . . 34
1.7 Interpolation . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
1.7.1 Interpolation in one dimension . . . . . . . . . . . . . 38
1.7.2 Interpolation in two dimensions . . . . . . . . . . . . 42
1.7.3 Interpolation of the velocity in a two-dimensional flow 45
1.7.4 Streamlines by interpolation . . . . . . . . . . . . . . 49
vii
viii
2 More on Kinematics 54
2.1 Fundamental modes of fluid parcel motion . . . . . . . . . . . 54
2.1.1 Function linearization . . . . . . . . . . . . . . . . . . 55
2.1.2 Velocity gradient tensor . . . . . . . . . . . . . . . . . 57
2.1.3 Relative motion of point particles . . . . . . . . . . . 59
2.1.4 Fundamental motions in two-dimensional flow . . . . 60
2.1.5 Fundamental motions in three-dimensional flow . . . 62
2.1.6 Gradient in polar coordinates . . . . . . . . . . . . . 62
2.2 Fluid parcel expansion . . . . . . . . . . . . . . . . . . . . . . 65
2.3 Fluid parcel rotation and vorticity . . . . . . . . . . . . . . . 66
2.3.1 Curl and vorticity . . . . . . . . . . . . . . . . . . . . 68
2.3.2 Two-dimensional flow . . . . . . . . . . . . . . . . . . 70
2.3.3 Axisymmetric flow . . . . . . . . . . . . . . . . . . . . 70
2.4 Fluid parcel deformation . . . . . . . . . . . . . . . . . . . . . 71
2.5 Numerical differentiation . . . . . . . . . . . . . . . . . . . . . 74
2.5.1 Numerical differentiation in one dimension . . . . . . 74
2.5.2 Numerical differentiation in two dimensions . . . . . . 76
2.5.3 Velocity gradient and related functions . . . . . . . . 78
2.6 Flow rate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
2.6.1 Areal flow rate and flux . . . . . . . . . . . . . . . . . 87
2.6.2 Areal flow rate across a line . . . . . . . . . . . . . . 88
2.6.3 Numerical integration . . . . . . . . . . . . . . . . . . 89
2.6.4 The Gauss divergence theorem in two dimensions . . 90
2.6.5 Flow rate in a three-dimensional flow . . . . . . . . . 91
2.6.6 Gauss divergence theorem in three dimensions . . . . 92
2.6.7 Axisymmetric flow . . . . . . . . . . . . . . . . . . . . 92
2.7 Mass conservation . . . . . . . . . . . . . . . . . . . . . . . . 94
2.7.1 Mass flux and mass flow rate . . . . . . . . . . . . . . 94
2.7.2 Mass flow rate across a closed line . . . . . . . . . . . 94
2.7.3 The continuity equation . . . . . . . . . . . . . . . . . 95
2.7.4 Three-dimensional flow . . . . . . . . . . . . . . . . . 96
2.7.5 Rigid-body translation . . . . . . . . . . . . . . . . . 96
2.7.6 Evolution equation for the density . . . . . . . . . . . 97
2.8 Properties of point particles . . . . . . . . . . . . . . . . . . . 99
2.8.1 The material derivative . . . . . . . . . . . . . . . . . 100
2.8.2 The continuity equation . . . . . . . . . . . . . . . . . 101
2.8.3 Point particle acceleration . . . . . . . . . . . . . . . 102
2.9 Incompressible fluids and stream functions . . . . . . . . . . . 106
2.9.1 Mathematical consequences of incompressibility . . . 107
2.9.2 Stream function for two-dimensional flow . . . . . . . 107
2.9.3 Stream function for axisymmetric flow . . . . . . . . 109
2.10 Kinematic conditions at boundaries . . . . . . . . . . . . . . . 111
2.10.1 The no-penetration boundary condition . . . . . . . . 111
ix
3 Flow Computation based on Kinematics 115
3.1 Flow classification based on kinematics . . . . . . . . . . . . . 115
3.2 Irrotational flow and the velocity potential . . . . . . . . . . . 117
3.2.1 Two-dimensional flow . . . . . . . . . . . . . . . . . . 117
3.2.2 Incompressible fluids and the harmonic potential . . . 119
3.2.3 Three-dimensional flow . . . . . . . . . . . . . . . . . 120
3.2.4 Boundary conditions . . . . . . . . . . . . . . . . . . 121
3.2.5 Cylindrical polar coordinates . . . . . . . . . . . . . . 122
3.2.6 Spherical polar coordinates . . . . . . . . . . . . . . . 122
3.2.7 Plane polar coordinates . . . . . . . . . . . . . . . . . 123
3.3 Finite-difference methods . . . . . . . . . . . . . . . . . . . . 124
3.3.1 Boundary conditions . . . . . . . . . . . . . . . . . . 124
3.3.2 Finite-difference grid . . . . . . . . . . . . . . . . . . 126
3.3.3 Finite-difference discretization . . . . . . . . . . . . . 127
3.3.4 Compilation of a linear system . . . . . . . . . . . . . 128
3.4 Linear solvers . . . . . . . . . . . . . . . . . . . . . . . . . . . 138
3.4.1 Gauss elimination . . . . . . . . . . . . . . . . . . . . 139
3.4.2 A menagerie of other methods . . . . . . . . . . . . . 140
3.5 Two-dimensional point sources and point-source dipoles . . . 141
3.5.1 Function superposition and fundamental solutions . . 141
3.5.2 Two-dimensional point source . . . . . . . . . . . . . 141
3.5.3 Two-dimensional point-source dipole . . . . . . . . . 144
3.5.4 Flow past a circular cylinder . . . . . . . . . . . . . . 148
3.5.5 Sources and dipoles in the presence of boundaries . . 149
3.6 Three-dimensional point sources and point-source dipoles . . 151
3.6.1 Three-dimensional point source . . . . . . . . . . . . 151
3.6.2 Three-dimensional point-source dipole . . . . . . . . . 152
3.6.3 Streaming flow past a sphere . . . . . . . . . . . . . . 153
3.6.4 Sources and dipoles in the presence of boundaries . . 154
3.7 Point vortices and line vortices . . . . . . . . . . . . . . . . . 155
3.7.1 The potential of irrotational circulatory flow . . . . . 156
3.7.2 Flow past a circular cylinder . . . . . . . . . . . . . . 157
3.7.3 Circulation . . . . . . . . . . . . . . . . . . . . . . . . 158
3.7.4 Line vortices in three-dimensional flow . . . . . . . . 161
4 Forces and Stresses 163
4.1 Body forces and surface forces . . . . . . . . . . . . . . . . . . 163
4.1.1 Body forces . . . . . . . . . . . . . . . . . . . . . . . . 163
4.1.2 Surface forces . . . . . . . . . . . . . . . . . . . . . . 164
4.2 Traction and the stress tensor . . . . . . . . . . . . . . . . . . 165
4.2.1 Traction on either side of a fluid surface . . . . . . . . 168
4.2.2 Traction on a boundary . . . . . . . . . . . . . . . . . 169
4.2.3 Symmetry of the stress tensor . . . . . . . . . . . . . 170
x
4.3 Traction jump across a fluid interface . . . . . . . . . . . . . . 171
4.3.1 Force balance at a two-dimensional interface . . . . . 172
4.3.2 Force balance at a three-dimensional interface . . . . 176
4.3.3 Axisymmetric interfaces . . . . . . . . . . . . . . . . . 179
4.4 Stresses in a fluid at rest . . . . . . . . . . . . . . . . . . . . . 183
4.4.1 Pressure from molecular motions . . . . . . . . . . . . 184
4.4.2 Jump in the pressure across an interface . . . . . . . 185
4.5 Constitutive equations . . . . . . . . . . . . . . . . . . . . . . 186
4.5.1 Simple fluids . . . . . . . . . . . . . . . . . . . . . . . 188
4.5.2 Incompressible Newtonian fluids . . . . . . . . . . . . 188
4.5.3 Viscosity . . . . . . . . . . . . . . . . . . . . . . . . . 190
4.5.4 Ideal fluids . . . . . . . . . . . . . . . . . . . . . . . . 192
4.5.5 Significance of the pressure in incompressible fluids . 193
4.5.6 Pressure in compressible fluids . . . . . . . . . . . . . 193
4.6 Simple non-Newtonian fluids . . . . . . . . . . . . . . . . . . 196
4.6.1 Unidirectional shear flow . . . . . . . . . . . . . . . . 197
4.7 Stresses in polar coordinates . . . . . . . . . . . . . . . . . . . 199
4.7.1 Cylindrical polar coordinates . . . . . . . . . . . . . . 200
4.7.2 Spherical polar coordinates . . . . . . . . . . . . . . . 202
4.7.3 Plane polar coordinates . . . . . . . . . . . . . . . . . 204
4.8 Boundary conditions for the tangential velocity . . . . . . . . 206
4.8.1 No-slip boundary condition . . . . . . . . . . . . . . . 206
4.8.2 Slip boundary condition . . . . . . . . . . . . . . . . . 207
4.9 Wall stresses in Newtonian fluids . . . . . . . . . . . . . . . . 208
4.9.1 Shear stress . . . . . . . . . . . . . . . . . . . . . . . 208
4.9.2 Normal stress . . . . . . . . . . . . . . . . . . . . . . 209
4.10 Interfacial surfactant transport . . . . . . . . . . . . . . . . . 210
4.10.1 Two-dimensional interfaces . . . . . . . . . . . . . . . 210
4.10.2 Axisymmetric interfaces . . . . . . . . . . . . . . . . . 214
4.10.3 Three-dimensional interfaces . . . . . . . . . . . . . . 216
5 Hydrostatics 218
5.1 Equilibrium of pressure and body forces . . . . . . . . . . . . 218
5.1.1 Equilibrium of an infinitesimal parcel . . . . . . . . . 220
5.1.2 Gases in hydrostatics . . . . . . . . . . . . . . . . . . 222
5.1.3 Liquids in hydrostatics . . . . . . . . . . . . . . . . . 223
5.2 Force exerted on immersed surfaces . . . . . . . . . . . . . . . 225
5.2.1 A sphere floating on a flat interface . . . . . . . . . . 226
5.3 Archimedes’ principle . . . . . . . . . . . . . . . . . . . . . . 231
5.3.1 Net force on a submerged body . . . . . . . . . . . . 233
5.3.2 Moments . . . . . . . . . . . . . . . . . . . . . . . . . 234
5.4 Interfacial shapes . . . . . . . . . . . . . . . . . . . . . . . . . 235
5.4.1 Curved interfaces . . . . . . . . . . . . . . . . . . . . 236
xi
5.4.2 The Laplace-Young equation . . . . . . . . . . . . . . 237
5.4.3 Three-dimensional interfaces . . . . . . . . . . . . . . 238
5.5 A semi-infinite interface attached to an inclined plate . . . . . 239
5.5.1 Numerical method . . . . . . . . . . . . . . . . . . . . 241
5.6 A meniscus between two parallel plates . . . . . . . . . . . . . 245
5.6.1 The shooting method . . . . . . . . . . . . . . . . . . 249
5.7 A two-dimensional drop on a horizontal or inclined plane . . 253
5.7.1 Drop on a horizontal plane . . . . . . . . . . . . . . . 253
5.7.2 A drop on an inclined plane . . . . . . . . . . . . . . 261
5.8 Axisymmetric meniscus inside a tube . . . . . . . . . . . . . . 273
5.9 Axisymmetric drop on a horizontal plane . . . . . . . . . . . 276
5.9.1 Solution space . . . . . . . . . . . . . . . . . . . . . . 278
5.10 A sphere straddling an interface . . . . . . . . . . . . . . . . . 286
5.10.1 Spheroidal particle . . . . . . . . . . . . . . . . . . . . 296
5.11 A three-dimensional meniscus . . . . . . . . . . . . . . . . . . 298
5.11.1 Elliptic coordinates . . . . . . . . . . . . . . . . . . . 299
5.11.2 Finite-difference method . . . . . . . . . . . . . . . . 300
5.11.3 Capillary force and torque . . . . . . . . . . . . . . . 306
6 Equation of Motion and Vorticity Transport 308
6.1 Newton’s second law of motion for a fluid parcel . . . . . . . 308
6.1.1 Rate of change of linear momentum . . . . . . . . . . 309
6.1.2 Equation of parcel motion . . . . . . . . . . . . . . . 309
6.1.3 Two-dimensional flow . . . . . . . . . . . . . . . . . . 310
6.2 Integral momentum balance . . . . . . . . . . . . . . . . . . . 313
6.2.1 Flow through a sudden enlargement . . . . . . . . . . 316
6.2.2 Isentropic flow through a conduit . . . . . . . . . . . 318
6.3 Cauchy’s equation of motion . . . . . . . . . . . . . . . . . . 319
6.3.1 Hydrodynamic volume force . . . . . . . . . . . . . . 320
6.3.2 Force on an infinitesimal parcel . . . . . . . . . . . . 320
6.3.3 The equation of motion . . . . . . . . . . . . . . . . . 322
6.3.4 Evolution equations . . . . . . . . . . . . . . . . . . . 323
6.3.5 Cylindrical polar coordinates . . . . . . . . . . . . . . 323
6.3.6 Spherical polar coordinates . . . . . . . . . . . . . . . 325
6.3.7 Plane polar coordinates . . . . . . . . . . . . . . . . . 325
6.3.8 Vortex force . . . . . . . . . . . . . . . . . . . . . . . 326
6.3.9 Summary of governing equation . . . . . . . . . . . . 326
6.3.10 Accelerating frame of reference . . . . . . . . . . . . . 326
6.4 Euler’s and Bernoulli’s equations . . . . . . . . . . . . . . . . 327
6.4.1 Boundary conditions . . . . . . . . . . . . . . . . . . 328
6.4.2 Irrotational flow . . . . . . . . . . . . . . . . . . . . . 329
6.4.3 Steady irrotational flow . . . . . . . . . . . . . . . . . 331
6.4.4 Steady rotational flow . . . . . . . . . . . . . . . . . . 334
xii
6.4.5 Flow with uniform vorticity . . . . . . . . . . . . . . 335
6.5 The Navier-Stokes equation . . . . . . . . . . . . . . . . . . . 337
6.5.1 Pressure and viscous forces . . . . . . . . . . . . . . . 338
6.5.2 A radially expanding or contracting bubble . . . . . . 339
6.5.3 Boundary conditions . . . . . . . . . . . . . . . . . . 340
6.5.4 Polar coordinates . . . . . . . . . . . . . . . . . . . . 341
6.6 Vorticity transport . . . . . . . . . . . . . . . . . . . . . . . . 343
6.6.1 Two-dimensional flow . . . . . . . . . . . . . . . . . . 343
6.6.2 Axisymmetric flow . . . . . . . . . . . . . . . . . . . . 346
6.6.3 Three-dimensional flow . . . . . . . . . . . . . . . . . 347
6.7 Dynamic similitude and the Reynolds number . . . . . . . . . 350
6.7.1 Dimensional analysis . . . . . . . . . . . . . . . . . . 352
6.8 Structure of a flow as a function of the Reynolds number . . 355
6.8.1 Stokes flow . . . . . . . . . . . . . . . . . . . . . . . . 356
6.8.2 Flow at high Reynolds numbers . . . . . . . . . . . . 356
6.8.3 Laminar and turbulent flow . . . . . . . . . . . . . . . 357
6.9 Dimensionless numbers in fluid dynamics . . . . . . . . . . . 357
7 Channel, Tube, and Film Flow 360
7.1 Steady flow in a two-dimensional channel . . . . . . . . . . . 360
7.1.1 Two-layer flow . . . . . . . . . . . . . . . . . . . . . . 363
7.1.2 Multi-layer flow . . . . . . . . . . . . . . . . . . . . . 365
7.1.3 Power-law fluids . . . . . . . . . . . . . . . . . . . . . 370
7.2 Steady film flow down an inclined plane . . . . . . . . . . . . 373
7.2.1 Multi-film flow . . . . . . . . . . . . . . . . . . . . . . 374
7.2.2 Power-law fluids . . . . . . . . . . . . . . . . . . . . . 375
7.3 Steady flow through a circular tube . . . . . . . . . . . . . . . 377
7.3.1 Multi-layer tube flow . . . . . . . . . . . . . . . . . . 380
7.3.2 Flow due to a translating sector . . . . . . . . . . . . 380
7.4 Steady flow through an annular tube . . . . . . . . . . . . . . 383
7.4.1 Multi-layer annular flow . . . . . . . . . . . . . . . . . 387
7.5 Steady flow in channels and tubes . . . . . . . . . . . . . . . 387
7.5.1 Elliptical tube . . . . . . . . . . . . . . . . . . . . . . 388
7.5.2 Rectangular tube . . . . . . . . . . . . . . . . . . . . 390
7.5.3 Triangular tube . . . . . . . . . . . . . . . . . . . . . 393
7.5.4 Semi-infinite rectangular channel . . . . . . . . . . . . 393
7.6 Steady swirling flow . . . . . . . . . . . . . . . . . . . . . . . 395
7.6.1 Annular flow . . . . . . . . . . . . . . . . . . . . . . . 396
7.6.2 Multi-layer flow . . . . . . . . . . . . . . . . . . . . . 399
7.7 Transient channel flow . . . . . . . . . . . . . . . . . . . . . . 400
7.7.1 Couette flow . . . . . . . . . . . . . . . . . . . . . . . 400
7.7.2 Impulsive motion of a plate in a semi-infinite fluid . . 403
7.7.3 Pressure- and gravity-driven flow . . . . . . . . . . . 406
xiii
7.8 Oscillatory channel flow . . . . . . . . . . . . . . . . . . . . . 409
7.8.1 Oscillatory Couette flow . . . . . . . . . . . . . . . . 409
7.8.2 Rayleigh’s oscillating plate . . . . . . . . . . . . . . . 411
7.8.3 Pulsating pressure-driven flow . . . . . . . . . . . . . 413
7.9 Transient and oscillatory flow in a circular tube . . . . . . . . 415
7.9.1 Transient Poiseuille flow . . . . . . . . . . . . . . . . 415
7.9.2 Pulsating pressure-driven flow . . . . . . . . . . . . . 420
7.9.3 Transient circular Couette flow . . . . . . . . . . . . . 422
7.9.4 More on Bessel functions . . . . . . . . . . . . . . . . 422
8 Finite-Difference Methods 424
8.1 Choice of governing equations . . . . . . . . . . . . . . . . . . 424
8.2 Unidirectional flow; velocity/pressure formulation . . . . . . . 425
8.2.1 Governing equations . . . . . . . . . . . . . . . . . . . 426
8.2.2 Explicit finite-difference method . . . . . . . . . . . . 426
8.2.3 Implicit finite-difference method . . . . . . . . . . . . 429
8.2.4 Steady state . . . . . . . . . . . . . . . . . . . . . . . 435
8.2.5 Two-layer flow . . . . . . . . . . . . . . . . . . . . . . 436
8.3 Unidirectional flow; velocity/vorticity formulation . . . . . . . 443
8.3.1 Boundary conditions for the vorticity . . . . . . . . . 444
8.3.2 Alternative set of equations . . . . . . . . . . . . . . . 445
8.3.3 Comparison with the velocity/pressure formulation . 446
8.4 Unidirectional flow; stream function/vorticity formulation . . 447
8.4.1 Boundary conditions for the vorticity . . . . . . . . . 448
8.4.2 A semi-implicit method . . . . . . . . . . . . . . . . . 449
8.5 Two-dimensional flow;
stream function/vorticity formulation . . . . . . . . . . . . . 451
8.5.1 Flow in a cavity . . . . . . . . . . . . . . . . . . . . . 451
8.5.2 Finite-difference grid . . . . . . . . . . . . . . . . . . 452
8.5.3 Unsteady flow . . . . . . . . . . . . . . . . . . . . . . 453
8.5.4 Steady flow . . . . . . . . . . . . . . . . . . . . . . . . 454
8.5.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . 460
8.6 Velocity/pressure formulation . . . . . . . . . . . . . . . . . . 463
8.6.1 Alternative system of governing equations . . . . . . 464
8.6.2 Pressure boundary conditions . . . . . . . . . . . . . 465
8.6.3 Compatibility condition for the pressure . . . . . . . 465
8.7 Operator splitting and solenoidal projection . . . . . . . . . . 466
8.7.1 Convection–diffusion step . . . . . . . . . . . . . . . . 467
8.7.2 Projection step . . . . . . . . . . . . . . . . . . . . . . 469
8.7.3 Boundary conditions for the intermediate velocity . . 471
8.7.4 Flow in a cavity . . . . . . . . . . . . . . . . . . . . . 471
8.7.5 Computation of the pressure . . . . . . . . . . . . . . 484
8.8 Staggered grids . . . . . . . . . . . . . . . . . . . . . . . . . . 485
xiv
9 Low Reynolds Number Flow 494
9.1 Flow in narrow channels . . . . . . . . . . . . . . . . . . . . . 494
9.1.1 Governing equations . . . . . . . . . . . . . . . . . . . 495
9.1.2 Scaling . . . . . . . . . . . . . . . . . . . . . . . . . . 495
9.1.3 Equations of lubrication flow . . . . . . . . . . . . . . 497
9.1.4 Lubrication in a slider bearing . . . . . . . . . . . . . 497
9.1.5 Flow in a wavy channel . . . . . . . . . . . . . . . . . 500
9.1.6 Dynamic lifting . . . . . . . . . . . . . . . . . . . . . 503
9.2 Film flow on a horizontal or inclined wall . . . . . . . . . . . 505
9.2.1 Thin-film flow . . . . . . . . . . . . . . . . . . . . . . 506
9.2.2 Numerical methods . . . . . . . . . . . . . . . . . . . 509
9.3 Multi-film flow on a horizontal or inclined wall . . . . . . . . 511
9.3.1 Evolution equations . . . . . . . . . . . . . . . . . . . 514
9.3.2 Numerical methods . . . . . . . . . . . . . . . . . . . 516
9.4 Two-layer channel flow . . . . . . . . . . . . . . . . . . . . . . 523
9.5 Flow due to the motion of a sphere . . . . . . . . . . . . . . . 534
9.5.1 Formulation in terms of the stream function . . . . . 535
9.5.2 Traction, force, and the Archimedes-Stokes law . . . . 539
9.6 Point forces and point sources in Stokes flow . . . . . . . . . 541
9.6.1 The Oseen tensor and the point force . . . . . . . . . 542
9.6.2 Flow representation in terms of singularities . . . . . 544
9.6.3 A sphere moving inside a circular tube . . . . . . . . 544
9.6.4 Boundary integral representation . . . . . . . . . . . . 547
9.7 Two-dimensional Stokes flow . . . . . . . . . . . . . . . . . . 549
9.7.1 Flow due to the motion of a cylinder . . . . . . . . . 549
9.7.2 Rotation of a circular cylinder . . . . . . . . . . . . . 552
9.7.3 Simple shear flow past a circular cylinder . . . . . . . 552
9.7.4 The Oseen tensor and the point force . . . . . . . . . 553
9.8 Local solutions . . . . . . . . . . . . . . . . . . . . . . . . . . 554
9.8.1 Separation of variables . . . . . . . . . . . . . . . . . 555
9.8.2 Flow near a corner . . . . . . . . . . . . . . . . . . . . 557
10 High Reynolds Number Flow 562
10.1 Changes in the structure of a flow
with increasing Reynolds number . . . . . . . . . . . . . . . . 562
10.2 Prandtl boundary layer analysis . . . . . . . . . . . . . . . . . 566
10.2.1 Boundary-layer equations . . . . . . . . . . . . . . . . 568
10.2.2 Surface curvilinear coordinates . . . . . . . . . . . . . 569
10.2.3 Parabolization . . . . . . . . . . . . . . . . . . . . . . 570
10.2.4 Flow separation . . . . . . . . . . . . . . . . . . . . . 570
10.3 Blasius boundary layer on a semi-infinite plate . . . . . . . . 571
10.3.1 Self-similarity and the Blasius equation . . . . . . . . 571
10.3.2 Numerical solution . . . . . . . . . . . . . . . . . . . 574
xv
10.3.3 Wall shear stress and drag force . . . . . . . . . . . . 576
10.3.4 Vorticity transport . . . . . . . . . . . . . . . . . . . 577
10.4 Displacement and momentum thickness . . . . . . . . . . . . 579
10.4.1 Von K`arm`an’s approximate method . . . . . . . . . . 581
10.5 Boundary layers in accelerating and decelerating flow . . . . . 583
10.5.1 Self-similarity . . . . . . . . . . . . . . . . . . . . . . 585
10.5.2 Numerical solution . . . . . . . . . . . . . . . . . . . 586
10.6 Momentum integral method . . . . . . . . . . . . . . . . . . . 587
10.6.1 The von K`arm`an-Pohlhausen method . . . . . . . . . 589
10.6.2 Pohlhausen polynomials . . . . . . . . . . . . . . . . . 590
10.6.3 Numerical solution . . . . . . . . . . . . . . . . . . . 592
10.6.4 Boundary layer around a curved body . . . . . . . . . 595
10.7 Instability of shear flows . . . . . . . . . . . . . . . . . . . . . 599
10.7.1 Stability analysis of shear flow . . . . . . . . . . . . . 600
10.7.2 Normal-mode analysis . . . . . . . . . . . . . . . . . . 601
10.7.3 Finite-difference solution . . . . . . . . . . . . . . . . 604
10.8 Turbulent flow . . . . . . . . . . . . . . . . . . . . . . . . . . 610
10.8.1 Transition to turbulence . . . . . . . . . . . . . . . . 611
10.8.2 Lagrangian turbulence . . . . . . . . . . . . . . . . . 613
10.8.3 Features of turbulent motion . . . . . . . . . . . . . . 613
10.8.4 Decomposition into mean and fluctuating components 615
10.8.5 Inviscid scales . . . . . . . . . . . . . . . . . . . . . . 617
10.8.6 Viscous scales . . . . . . . . . . . . . . . . . . . . . . 618
10.8.7 Relation between inviscid and viscous scales . . . . . 618
10.8.8 Fourier analysis . . . . . . . . . . . . . . . . . . . . . 619
10.9 Analysis and modeling of turbulent flow . . . . . . . . . . . . 623
10.9.1 Reynolds stresses . . . . . . . . . . . . . . . . . . . . 623
10.9.2 Prandtl’s mixing length model . . . . . . . . . . . . . 625
10.9.3 Logarithmic law for wall-bounded shear flow . . . . . 627
10.9.4 Correlations . . . . . . . . . . . . . . . . . . . . . . . 628
11 Vortex Motion 631
11.1 Vorticity and circulation in two-dimensional flow . . . . . . . 631
11.2 Point vortices . . . . . . . . . . . . . . . . . . . . . . . . . . . 633
11.2.1 Dirac’s delta function in a plane . . . . . . . . . . . . 634
11.2.2 Evolution of the point vortex strength . . . . . . . . . 636
11.2.3 Velocity of a point vortex . . . . . . . . . . . . . . . . 636
11.2.4 Motion of a collection of point vortices . . . . . . . . 636
11.2.5 Effect of boundaries . . . . . . . . . . . . . . . . . . . 637
11.2.6 A periodic array of point vortices . . . . . . . . . . . 639
11.2.7 A point vortex between two parallel walls . . . . . . . 641
11.2.8 A point vortex in a semi-infinite strip . . . . . . . . . 641
11.3 Two-dimensional flow with distributed vorticity . . . . . . . . 645
11.3.1 Vortex patches with uniform vorticity . . . . . . . . . 646