Thư viện tri thức trực tuyến
Kho tài liệu với 50,000+ tài liệu học thuật
© 2023 Siêu thị PDF - Kho tài liệu học thuật hàng đầu Việt Nam

Electromagnetic field theories for engineering
Nội dung xem thử
Mô tả chi tiết
Electromagnetic Field Theories for Engineering
Md. Abdus Salam
Electromagnetic Field
Theories for Engineering
2123
Md. Abdus Salam
Department of Electrical and Electronic Engineering
Institute Technology Brunei
Darussalam
Brunei Darussalam
ISBN 978-981-4585-65-1 ISBN 978-981-4585-66-8 (eBook)
DOI 10.1007/978-981-4585-66-8
Springer Singapore Heidelberg New York Dordrecht London
Library of Congress Control Number: 2014932423
© Springer Science+Business Media Singapore 2014
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology
now known or hereafter developed. Exempted from this legal reservation are brief excerpts in connection
with reviews or scholarly analysis or material supplied specifically for the purpose of being entered and
executed on a computer system, for exclusive use by the purchaser of the work. Duplication of this
publication or parts thereof is permitted only under the provisions of the Copyright Law of the Publisher’s
location, in its current version, and permission for use must always be obtained from Springer. Permissions
for use may be obtained through RightsLink at the Copyright Clearance Center. Violations are liable to
prosecution under the respective Copyright Law.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
While the advice and information in this book are believed to be true and accurate at the date of publication,
neither the authors nor the editors nor the publisher can accept any legal responsibility for any errors or
omissions that may be made. The publisher makes no warranty, express or implied, with respect to the
material contained herein.
Printed on acid-free paper
Springer is part of Springer Science+Business Media (www.springer.com)
To all my teachers, colleagues, and students
who have encouraged and helped me to
develop professionally over the years. Also,
to my wife Asma Ara Bagum, my son Syeed
Hasan, and my daughters, Yusra binti Salam
and Sundus Salam for their love, patience,
and support.
Preface
Electrical engineering plays an important role in modernizing human life and
encompasses wide areas such as: generation, transmission, and distribution of electrical power, digital systems, satellite communications, signal processing, robotics,
mechatronics, computer, control, artificial intelligence, and networks.
A 4 year electrical and electronic engineering curriculum normally contains two
modules of electromagnetic field theories during the first 2 years. However, some
curricula do not have enough slots to accommodate the two modules. This book,
Electromagnetic Field Theories, is designed for electrical and electronic engineering undergraduate students to provide fundamental knowledge of electromagnetic
fields and waves in a structured manner. A comprehensive fundamental knowledge
of electric and magnetic fields is required to understand the working principles of
generators, motors, and transformers. This knowledge is also necessary to analyze
transmission lines, substations, insulator flashover mechanism, transient phenomena,
etc.
This book is written in a simple way so that the students will find it easy to understand the electromagnetic field theory and its application in electrical engineering.
Several worked out examples are included to enhance the understanding of electromagnetic field theories. Each chapter also includes several practice problems with
answers given at the end of the book, which would facilitate students’understanding.
The basic parameters in electromagnetic fields are discussed in Chap. 1, while
vector calculus and orthogonal coordinate systems are explained in Chap. 2. In
Chap. 3, the basics of electrostatics, Coulomb’s law, electric field intensity, Gauss’
law, Ohm’s law, and energy have been discussed. Poisson’s and Laplace’s equations,
uniqueness theorem, and their analysis on geometric shapes have been introduced
in Chap. 4. The current and its density, resistance, capacitance, continuity equation,
etc., have been discussed in Chap. 5. Chapter 6 explains Lorentz’s force, magnetic
flux density, Biot–Savart law, Ampere’s circuital law, vector magnetic potential, air
gap, and series and parallel magnetic circuit. Faraday’s law, conduction current,
displacement current, Maxwell’s equation, and basics of transformer, have been
discussed in Chap. 7. Chapter 8 deals with transmission line equations, velocity
of wave propagation, wavelengths, lossless propagation, distortionless transmission
line, power, and Smith chart. Plane waves and its analysis are included in Chap. 9,
and basics of antenna have been discussed in Chap. 10.
vii
viii Preface
Features
Several textbooks on electromagnetic theories already exist in the market. However,
the book on Electromagnetic Field Theories for Engineering is written for electrical
and electronic engineering students with the following key features.
• Easy and logical presentation of each article
• Interpretation of each theory with proper mathematical expressions
• Emphasis on engineering mathematics to understand electromagnetic field
theories
• Detailed description of fundamental laws of electromagnetic field theories
• Step-by-step problem solving procedures
• Inclusion of solved examples and practice problems
• Large number of exercise problems at the end of each chapter
• Inclusion of answers to practice and exercise problems
Aids for Instructors
The solution manual will be provided to instructors who will adopt this as a textbook,
and they may obtain the solution manual by directly contacting the publishers.
Acknowledgments
The author has written this textbook based on his years of teaching experience. The
author would like to acknowledge with gratitude the following faculty members
for their inspiration, comments, and suggestions during the preparation of the first
edition of this book.
Dr. M. H. Rashid, Professor, University of West Florida, USA
Dr. Akhtar Kalam, Professor, Victoria University, Australia
Dr. M. Saifur Rahman, Professor, Virginia Tech and State University, USA
Dr. Jim Cathey, Professor, University of Kentucky, Lexington, USA
Dr. Mohammod Ali, Professor, University of South Carolina, USA
Dr. M. Bashir Uddin, Professor, Dhaka University of Engineering andTechnology,
Gazipur, Bangladesh
Dr. M. A. Rahman, Professor, Memorial University of Newfoundland, Canada
Dr. S. M. Islam, Professor, Curtin University of Technology, Perth, Australia
Dr. Hussein Ahmad, Professor, Universiti Teknologi Malaysia
Dr. M. M. A. Hashem, Professor, Khulna University of Engineering and
Technology, Bangladesh
Dr. Khaled Ellithy, Professor, Qatar University, Doha, Qatar
Dr. Saleh Al Alawi, Professor, Sultan Qaboos University, Oman
Preface ix
Dr. Md. Rafiqul Islam, Associate Professor, International Islamic University,
Malaysia
Dr. Mohammad A. Kashem, Associate Professor, University of Wollongong,
NSW, Australia
Dr. Quazi Delwar Hossain, Assistant Professor, Chittagong University of
Engineering and Technology, Bangladesh
Dr. Q. M. Rahman, Assistant Professor, Western University, London, Canada
The author would like to thank Dk. Nurul Saidatul Mirzuana and Umi Farina,
B. Eng. students for typing the solution manual of this book. The author would
also like to thank Dr. Loyola D’Silva, Production Manager, Springer Asia Pvt. Ltd.,
Singapore, and the production staff for their help in bringing the first edition of the
book to completion.
Brunei Darussalam Md. Abdus Salam PhD
January 2014
Contents
1 Basics of Electromagnetics ....................................... 1
1.1 Introduction ............................................... 1
1.2 Field Parameters and SI Units ................................ 1
1.2.1 Electric Flux Density and Field Intensity ............... 2
1.2.2 Magnetic Flux Density and Field Intensity ............. 3
1.2.3 Current Density.................................... 4
1.3 Exercise Problems .......................................... 4
Bibliography .................................................... 5
2 Vector Analysis and Coordinate Systems ........................... 7
2.1 Introduction ............................................... 7
2.2 Vectors and Scalars ......................................... 7
2.3 Vector Components ......................................... 8
2.4 Unit Vectors ............................................... 9
2.5 Vector Addition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.6 Vector Subtraction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.7 Vectors Multiplication and Division . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.8 Dot Product of Two Vectors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.9 Cross Product of Two Vectors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.10 Orthogonal Coordinate Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
2.10.1 Cartesian Coordinate System . . . . . . . . . . . . . . . . . . . . . . . . 18
2.10.2 Circular Cylindrical Coordinate System . . . . . . . . . . . . . . . 22
2.10.3 Spherical Coordinate System . . . . . . . . . . . . . . . . . . . . . . . . 28
2.11 Potential Gradient and Gradient of a Scalar Field . . . . . . . . . . . . . . . . 35
2.12 Divergence of a Vector Field . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
2.13 Curl of a Vector Field . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
2.14 Two Important Vector Identities. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
2.15 Exercise Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
xi
xii Contents
3 Electrostatic Field . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
3.2 Coulomb’s Law . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
3.3 Electric Field Intensity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
3.4 Gauss’ Law . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
3.5 Electric Field of Continuous Charge Distribution . . . . . . . . . . . . . . . . 60
3.6 Electric Field Due to an Infinite Sheet Charge . . . . . . . . . . . . . . . . . . . 63
3.7 Electric Potential . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
3.8 Derivation of Electric Field . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
3.9 Line Integral of Irrotational Field . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
3.10 Potential Due to a Point Charge . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
3.11 Electric Dipole . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
3.12 Materials for Static Electric Field . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
3.13 Dielectric Polarization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
3.14 Dielectric Material Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
3.15 Dielectric Boundary Conditions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
3.16 Refraction of Electric Field at Dielectric Boundary. . . . . . . . . . . . . . . 83
3.17 Electrostatic Energy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86
3.18 Exercise Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88
Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90
4 Poisson’s and Laplace’s Equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91
4.2 Derivation of Poisson’s and Laplace’s Equations. . . . . . . . . . . . . . . . . 91
4.3 Uniqueness Theorem. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94
4.4 Solutions of Laplace’s Equation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96
4.4.1 One-Dimension Solution . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96
4.4.2 Two-Dimension Solution . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97
4.5 Solution of Laplace’s Equation in Cylindrical Coordinates . . . . . . . . 104
4.6 Solutions of Poisson’s Equation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105
4.7 Numerical Solution of Laplace’s Equation . . . . . . . . . . . . . . . . . . . . . . 106
4.8 Exercise Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115
Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116
5 Electric Currents. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117
5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117
5.2 Current and Current Density . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117
5.3 Conductivity and Resistance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120
5.4 Power and Joule’s Law . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122
5.5 Continuity Equation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123
5.6 Current Density Boundary Conditions . . . . . . . . . . . . . . . . . . . . . . . . . 125
5.7 Capacitance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129
5.8 Parallel Plate Capacitor. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130
5.9 Determination of Resistance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132
5.10 Coaxial Capacitor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133
Contents xiii
5.11 Spherical Capacitor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134
5.12 Parallel Plate Capacitor with Two Dielectric Slabs . . . . . . . . . . . . . . . 136
5.13 Exercise Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138
Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139
6 Static Magnetic Field . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141
6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141
6.2 Magnetic Flux Density . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142
6.3 Biot–Savart’s Law . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143
6.4 Magnetic Field of a Long Straight Conductor . . . . . . . . . . . . . . . . . . . 144
6.5 Ampere’s Circuital Law . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148
6.6 Ampere’s Circuital Law in a Long Straight Conductor . . . . . . . . . . . . 149
6.7 Infinite Sheet of Current . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151
6.8 Curl of a Magnetic Field . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153
6.9 Scalar and Vector Magnetic Potential . . . . . . . . . . . . . . . . . . . . . . . . . . 159
6.10 Magnetization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 161
6.11 Magnetic Field Boundary Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . 164
6.12 Magnetic Field of Two Media . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 166
6.13 Magnetic Circuit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 167
6.14 Series Magnetic Circuit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 168
6.15 Parallel Magnetic Circuit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 170
6.16 Magnetic Circuit with Air Gap . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 173
6.17 Hysteresis Curve . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 178
6.18 Inductance and Mutual Inductance . . . . . . . . . . . . . . . . . . . . . . . . . . . . 179
6.19 Exercise Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 182
Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 185
7 Time-Varying Fields . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 187
7.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 187
7.2 Faraday’s Law . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 187
7.3 Motional Voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 188
7.4 Maxwell’s Equations. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 190
7.5 Conduction and Displacement Currents . . . . . . . . . . . . . . . . . . . . . . . . 190
7.6 Maxwell’s Equation from Ampere’s Law . . . . . . . . . . . . . . . . . . . . . . . 192
7.7 Transformer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 195
7.8 Time-Varying Potentials . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 197
7.9 Field of a Series Circuit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 199
7.10 Time-Harmonic Fields . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 201
7.11 Exercise Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 206
Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 207
8 Transmission Lines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 209
8.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 209
8.2 Transmission Line Equation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 209
8.3 Phasor Form Solution of Transmission Line Equation . . . . . . . . . . . . 212
xiv Contents
8.4 Lossless Propagation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 215
8.5 Low-Loss Transmission Line . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 218
8.6 Distortionless Line . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 220
8.7 Determination of Attenuation Constant. . . . . . . . . . . . . . . . . . . . . . . . . 223
8.8 A Finite Transmission Line . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 224
8.9 Input Impedance for Lossless Transmission Line . . . . . . . . . . . . . . . . 229
8.10 Power of Lossless Transmission Line . . . . . . . . . . . . . . . . . . . . . . . . . . 234
8.11 Basics of Smith Chart . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 236
8.12 Exercise Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 240
Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 241
9 Uniform Plane Waves. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 243
9.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 243
9.2 Time-Domain Maxwell’s Equations . . . . . . . . . . . . . . . . . . . . . . . . . . . 243
9.3 Wave Equation in Time-Harmonic Fields . . . . . . . . . . . . . . . . . . . . . . . 245
9.4 Solution of a Wave Equation in the Frequency Domain . . . . . . . . . . . 246
9.5 Solution of a Wave Equation in the Time Domain . . . . . . . . . . . . . . . . 251
9.6 Wave Propagation in Lossy Medium . . . . . . . . . . . . . . . . . . . . . . . . . . . 254
9.7 Wave Propagation in Good Conductors . . . . . . . . . . . . . . . . . . . . . . . . 257
9.8 Power Flow and Poynting Vector . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 260
9.9 Incident and Reflected Waves. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 263
9.10 Uniform Wave Polarization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 271
9.11 Exercise Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 272
Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 273
10 Basics of Antennas . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 275
10.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 275
10.2 Working Principles of Antennas. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 275
10.3 Potential Functions for Antennas . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 276
10.4 Hertzian Dipole . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 277
10.5 Antenna Gain and Directivity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 285
10.6 Long Dipole Antennas . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 289
10.7 Friis Transmission Equation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 293
10.8 Exercise Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 295
Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 295
Appendix A: Mathematical Formulae . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 297
A.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 297
A.2 Basic Trigonometric Formulae . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 297
A.3 Trigonometric Formulae . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 298
A.4 Derivative and Integral Formulae . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 299
A.5 Exponential and Logarithmic Formulae . . . . . . . . . . . . . . . . . . . . . . . . 300
A.6 Integral Formulae . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 300
Contents xv
Appendix B: Answers to Practice and Exercise Problems. . . . . . . . . . . . . . . 301
Chapter 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 301
Chapter 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 301
Chapter 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 303
Chapter 4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 304
Chapter 5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 305
Chapter 6 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 306
Chapter 7 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 307
Chapter 8 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 307
Chapter 9 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 308
Chapter 10 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 309
Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 311
Chapter 1
Basics of Electromagnetics
1.1 Introduction
The word electromagnetic field is the combination of electric and magnetic fields.
An electromagnetic field is sometimes known as EM field, and it is generated when
charged particles are at rest or in motion. There are two types of charges in elementary
physics, namely the positive charge and the negative charge. An electric field depends
mainly on these charges. The rate of change of charge generates current, which
produces a magnetic field. A field is a special distribution of a parameter, which may
or may not be a function of time. Time varying electric and magnetic fields are joined
together to form an EM field. The time-dependent EM field produces a wave that
radiates from the source.
The arcs or sparks are produced when the surface potential gradient (electric
field) of a conductor exceeds the dielectric strength of the surrounding air. These
arcs transmit energy to a certain distance. This kind of phenomena leads scientists or
engineers to work on communication systems. Principles of EM fields are applied in
designing microwaves, antennae, electric machines, communication systems, and
bioelectromagnetic and remote sensing systems. Some tools are required to study
EM fields. These include imagination, vector algebra, coordinate systems and
transformation. In this chapter, different parameters of EM fields will be discussed.
1.2 Field Parameters and SI Units
Electric charges and currents produce electric and magnetic fields. It is very important to define all the field parameters and their standard units to get fundamental
knowledge of electromagnetism. The notation and units of EM field parameters
are mentioned in Table 1.1. The charge density is defined as the fixed amount of
charge per unit volume. The charge density is categorized as volume, surface and
line charge densities. For surface, the charge q is identified by an element whose
area is s. Similarly, for line, the charge q is identified by an element whose length
is l. The volume, surface and line charge densities can be expressed as
Md. A. Salam, Electromagnetic Field Theories for Engineering, 1
DOI 10.1007/978-981-4585-66-8_1, © Springer Science+Business Media Singapore 2014
2 1 Basics of Electromagnetics
Table 1.1 Symbols and units
of field parameters Name of field parameter Notation/Symbol Unit
Electric field intensity E V/m
Electric flux density or
electric displacement
D C/m
Magnetic field intensity H A/m
Magnetic flux density B Wb/m2 or
Tesla
Charge density ρ C/m3
Current density J A/m2
ρv = lim
v→0
q
v
(C/m3
) (1.1)
ρs = lim
s→0
q
s (C/m2
) (1.2)
ρl = lim
l→0
q
l (C/m) (1.3)
The time rate of change of charge is known as current. The current is symbolised by
I and its unit of measure is C/s or A.
In electromagnetic modelling, four fundamental units are required. These are
length, mass, time and current. The SI (International System of Units) unit is often
known as MKSA system, which is derived from the four basic units as mentioned in
Table 1.2.
1.2.1 Electric Flux Density and Field Intensity
There is a direct relationship between the electric flux density and the electric field
intensity. The relationship between the electric flux density and the electric field
intensity is represented as
D = εE, (1.4)
where ε is the proportionality constant and it is known as permittivity of the medium.
The permittivity of any medium is defined as
ε = ε0εr, (1.5)
where
ε0 is the permittivity of the free space and its value is 8.854 × 10−12 F/m and
εr is the relative permittivity of the medium.
Substituting Eq. (1.5) into Eq. (1.4) yields
D = ε0εrE. (1.6)