Thư viện tri thức trực tuyến
Kho tài liệu với 50,000+ tài liệu học thuật
© 2023 Siêu thị PDF - Kho tài liệu học thuật hàng đầu Việt Nam

Electric Power System Planning : Issues, Algorithms and Solutions
Nội dung xem thử
Mô tả chi tiết
Power Systems
For further volumes:
http://www.springer.com/series/4622
Hossein Seifi • Mohammad Sadegh Sepasian
Electric Power System
Planning
Issues, Algorithms and Solutions
123
Prof. Hossein Seifi
Faculty of Electrical and Computer
Engineering
Tarbiat Modares University
PO Box 14115-194
Tehran
Iran
e-mail: [email protected]
Dr. Mohammad Sadegh Sepasian
Power and Water University of Technology
PO Box 16765-1719
Tehran
Iran
e-mail: [email protected]
ISSN 1612-1287 e-ISSN 1860-4676
ISBN 978-3-642-17988-4 e-ISBN 978-3-642-17989-1
DOI 10.1007/978-3-642-17989-1
Springer Heidelberg Dordrecht London New York
Springer-Verlag Berlin Heidelberg 2011
This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction on microfilm or in any other way, and storage in data banks. Duplication of this
publication or parts thereof is permitted only under the provisions of the German Copyright Law of
September 9, 1965, in its current version, and permission for use must always be obtained from
Springer. Violations are liable to prosecution under the German Copyright Law.
The use of general descriptive names, registered names, trademarks, etc. in this publication does not
imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
Cover design: eStudio Calamar, Berlin/Figueres
Printed on acid-free paper
Springer is part of Springer Science+Business Media (www.springer.com)
Preface
One of the largest, or perhaps, the largest scale system ever made, is the electric
grid with its numerous components, called a power system. Over decades, power
systems have evolved to the systems which may cover countries or even
continents.
From one side, the behaviors, modeling and operation of the basic components
of a power system should be understood and recognized. That is why so many
books are published to address such issues.
On the other hand, once the system as a whole is observed, its analysis,
operation and planning deserve special considerations. While analysis and to some
extent, operation of power systems have received attention in literature and in
terms of text books, power system planning is not rich from this viewpoint. This
book is intended to cover this issue.
While the importance of power system planning can not be overstated, writing a
text book on this issue is not an easy task due to some, but not limited to, reasons
as follows
• Planning horizon is from short to long periods. The issues of concern are not the
same; although some may be similar.
• Utilities and experts may think of a specific planning term quite differently. For
instance, one may think of long-term power system planning to cover 20 years
onward, while the other may consider it as 5–15 years.
• While the basics of say, load flow in a book on power system analysis, or
Automatic Generation Control (AGC) in a book on power system operation, are
essentially the same on similar books, the algorithms and the methodologies
used in power system planning may be utility or even case dependent.
The book is intended to cover long-term issues of power system planning,
mainly on transmission and sub-transmission levels. However, the reader would
readily recognize that some of the chapters may also be used for mid-term or even
short-term planning, perhaps with some modifications. In terms of the long-term
planning itself, the algorithms presented are mainly so designed that they may be
used for various time frames. However, enough input data should be available;
v
which may be unavailable for very long-term periods. Regarding the methodologies and the algorithms, the chapters are arranged in a case independent manner
and the algorithms are formulated in the ways that the readers can readily modify
them according to their wishes.
We envision two groups of audiences for this book. The first consists of final
year BSc or graduate students with a major in power systems. The second group
consists of professionals working in and around the power industry especially in
planning departments.
To bridge the gap between formal learning of the algorithms and deep understanding of the materials, some Matlab M-file codes are generated and attached in
Appendix L. They are based on the materials developed within the chapters and
easy to follow. Once referred to any of the above codes within the chapters, it is
shown as [#X.m; Appendix L: (L.Y)], where X stands for M-file name and Y
stands for the relevant section number. These codes may be accessed through the
publisher website, too. They are used to solve some of the examples within and
some of the problems at the end of the chapters. However, we should emphasize
that they are not designed as commercial software and the instructors may ask the
students to modify them and the professionals may improve them to meet their
special requirements.
Some numerical examples are solved within the chapters. Although we have
tried to use realistic input parameters, especially economic parameters are quite
case dependent. That is why, an artificial monetary unit abbreviated as R is used to
refer to economic values.
We were fortune to make the most benefits of our both academic and professional positions in preparing the book. The first author is a professor of the Faculty
of Electrical and Computer Engineering at Tarbiat Modares University (TMU)
(Tehran/Iran). TMU is only involved in graduate studies. He has supervised or has
under supervision more than 80 MSc and PhD students. At the same time, he has
founded a National Research Center (Iran Power System Engineering Research
Center, IPSERC) as an affiliated center to TMU, for which he is acting as the head.
Over the last few years, IPSERC has been actively involved in more than 60
strategic planning studies for major Iranian electric utilities. His vast experiences
within IPSERC are properly reflected in various chapters. Some commercial
software is also developed, now used by some of Iranian utilities. The Iranian
electric power industry ranks nearly 8th in the world, in terms of the generation
capacity (roughly 57 GW, 2010) and his experiences are based on this rather large
scale system.
The second author is a faculty member at Power and Water University of
Technology (PWUT) and a senior expert in IPSERC since its foundation. PWUT is
affiliated to the Ministry of Energy of the country with vast experiences in terms of
practical issues.
Many individuals and organizations have made the writing of this book possible. We are deeply grateful to the experts in Iranian electric power industry who
graciously discussed and helped our understanding of practical issues and their
requirements. We enjoyed marvelous learning opportunity through carrying out
vi Preface
the strategic planning studies for this industry. Mr Rae, Mr Akhavan (both
from Tavanir), Dr Zangene, Mrs Zarduzi (both from Tehran Regional Electric
Utility), Mr Zeraat-Pishe, Mr Asiae (both from Fars Regional Electric Utility),
Mr Arjomand, Mr Torabi, Mr Ghasemi (all from Hormozgan Regional Electric
Utility), Mr Mehrabi (from Yazd Regional Electric Utility), Mrs Ghare-Toghe
(from Mazandaran Regional Electric Utility) are only a few among many others.
Mr Saburi (from Tavanir) provided us some useful data for a part of Chap. 4.
However, we should especially thank Dr Ahmadian for his support in founding
IPSERC from the Ministry of Energy viewpoint. Special thanks are due to
Mr Mohseni Kabir, who was and is still acting as the deputy in planning affairs of
Tavanir (Tavanir is the holding company of Iranian power industry). Besides very
useful technical discussions with him, he also greatly helped bridge Tavanir with
IPSERC.
Within IPSERC, many individuals have contributed developing the software;
employed in the studies, discussing with the industry experts, etc. To name a few,
Dr Akbari, Dr Yousefi, Dr Haghighat, Mr Khorram, Mr Elyasi, Mr Roustaei,
Mrs Hajati, Mr Sharifzadeh, Mr Shaffee-Khah deserve special thanks.
Our gratitude also extends to all others who, somehow, participated in the
development of the book-particularly our students who never cease to ask
challenging questions-and to our friends who offered encouragement and support.
Mr Daraeepour developed the Matlab M-files codes. Dr Sheikh-al-Eslam,
Dr Akbari, Dr Dehghani, Mr Elyasi, Mrs Hajati, Mr Roustaei, Mr Khorram,
Mr Velayati, Mr Sharif-Zadeh, Mr Karimi reviewed the chapters, solved some
examples, devised some problems and provided us useful suggestions and
comments. Mrs Najafi and Mrs Tehrani did an excellent job in typing the whole
manuscript.
One name deserves special gratitude. We deeply owe Mr Elyasi for an excellent
task of reviewing, typesetting, organizing the manuscript and careful editing of the
book. He did a really marvelous task in a very nice and efficient manner.
Sincere thanks are due to Prof. Christoph Baumann and his colleagues, from
Springer, for their support in the preparation of the book. Finally, we should thank
our families who graciously accepted us as part-time family members during the
course of this book.
We should mention that a review of the chapters is provided in Chap. 1.
Although the book is intended to be a text book, power system planning is a
research-oriented topic, too. That is why; we have also added a chapter, to cover
research issues.
Finally, we should mention that although we have attempted to review the
materials so that they are, hopefully, error free, some may still exist. Please feel
free to email us feedback including errors, comments, opinions, or any other useful
information. These suggestions from the readers for improving the book clarity
and accuracy will be greatly welcomed.
Tehran, May 2011 Hossein Seifi
Mohammad Sadegh Sepasian
Preface vii
Contents
1 Power System Planning, Basic Principles................... 1
1.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Power System Elements . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.3 Power System Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.4 Power System Studies, a Time-horizon Perspective . . . . . . . . 4
1.5 Power System Planning Issues . . . . . . . . . . . . . . . . . . . . . . . 7
1.5.1 Static Versus Dynamic Planning . . . . . . . . . . . . . . . 8
1.5.2 Transmission Versus Distribution Planning . . . . . . . . 8
1.5.3 Long-term Versus Short-term Planning . . . . . . . . . . . 9
1.5.4 Basic Issues in Transmission Planning . . . . . . . . . . . 10
1.6 A Review of Chapters. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
2 Optimization Techniques . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.2 Problem Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.2.1 Problem Definition . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.2.2 Problem Modeling . . . . . . . . . . . . . . . . . . . . . . . . . 18
2.3 Solution Algorithms, Mathematical Versus Heuristic
Techniques . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
2.3.1 Mathematical Algorithms . . . . . . . . . . . . . . . . . . . . 20
2.3.2 Heuristic Algorithms. . . . . . . . . . . . . . . . . . . . . . . . 24
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
3 Some Economic Principles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
3.2 Definitions of Terms. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
3.3 Cash-flow Concept . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
3.3.1 Time Value of Money. . . . . . . . . . . . . . . . . . . . . . . 33
3.3.2 Economic Terms . . . . . . . . . . . . . . . . . . . . . . . . . . 34
ix
3.4 Economic Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
3.4.1 Present Worth Method . . . . . . . . . . . . . . . . . . . . . . 36
3.4.2 Annual Cost Method. . . . . . . . . . . . . . . . . . . . . . . . 38
3.4.3 Rate of Return Method . . . . . . . . . . . . . . . . . . . . . . 38
3.4.4 A Detailed Example . . . . . . . . . . . . . . . . . . . . . . . . 39
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
4 Load Forecasting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
4.2 Load Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
4.3 Load Driving Parameters. . . . . . . . . . . . . . . . . . . . . . . . . . . 47
4.4 Spatial Load Forecasting . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
4.5 Long Term Load Forecasting Methods . . . . . . . . . . . . . . . . . 50
4.5.1 Trend Analysis. . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
4.5.2 Econometric Modeling . . . . . . . . . . . . . . . . . . . . . . 51
4.5.3 End-use Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . 51
4.5.4 Combined Analysis. . . . . . . . . . . . . . . . . . . . . . . . . 52
4.6 Numerical Examples. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
4.6.1 Load Forecasting for a Regional Utility . . . . . . . . . . 52
4.6.2 Load Forecasting of a Large Scale Utility . . . . . . . . . 56
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
5 Single-bus Generation Expansion Planning . . . . . . . . . . . . . . . . . 69
5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
5.2 Problem Definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
5.3 Problem Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
5.4 Mathematical Development . . . . . . . . . . . . . . . . . . . . . . . . . 75
5.4.1 Objective Functions . . . . . . . . . . . . . . . . . . . . . . . . 75
5.4.2 Constraints . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
5.5 WASP, a GEP Package. . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
5.5.1 Calculation of Costs . . . . . . . . . . . . . . . . . . . . . . . . 78
5.5.2 Description of WASP-IV Modules . . . . . . . . . . . . . . 80
5.6 Numerical Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
Problems. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
6 Multi-bus Generation Expansion Planning. . . . . . . . . . . . . . . . . . 89
6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89
6.2 Problem Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90
6.3 A Linear Programming (LP) Based GEP. . . . . . . . . . . . . . . . 91
6.3.1 Basic Principles . . . . . . . . . . . . . . . . . . . . . . . . . . . 91
6.3.2 Mathematical Formulation . . . . . . . . . . . . . . . . . . . . 95
6.4 Numerical Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96
x Contents
6.5 A Genetic Algorithm (GA) Based GEP. . . . . . . . . . . . . . . . . 98
6.6 Numerical Results for GA-based Algorithm. . . . . . . . . . . . . . 99
Problems. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102
7 Substation Expansion Planning . . . . . . . . . . . . . . . . . . . . . . . . . . 105
7.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105
7.2 Problem Definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106
7.3 A Basic Case . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106
7.3.1 Problem Description . . . . . . . . . . . . . . . . . . . . . . . . 106
7.3.2 Typical Results for a Simple Case . . . . . . . . . . . . . . 110
7.4 A Mathematical View . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113
7.4.1 Objective Function . . . . . . . . . . . . . . . . . . . . . . . . . 114
7.4.2 Constraints . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115
7.4.3 Problem Formulation . . . . . . . . . . . . . . . . . . . . . . . 115
7.4.4 Required Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116
7.5 An Advanced Case . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117
7.5.1 General Formulation . . . . . . . . . . . . . . . . . . . . . . . . 117
7.5.2 Solution Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . 122
7.6 Numerical Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124
7.6.1 System Under Study . . . . . . . . . . . . . . . . . . . . . . . . 124
7.6.2 Load Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125
7.6.3 Downward Grid . . . . . . . . . . . . . . . . . . . . . . . . . . . 125
7.6.4 Upward Grid . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126
7.6.5 Transmission Substation . . . . . . . . . . . . . . . . . . . . . 126
7.6.6 Miscellaneous . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128
7.6.7 Results for BILP Algorithm. . . . . . . . . . . . . . . . . . . 128
7.6.8 Results for GA. . . . . . . . . . . . . . . . . . . . . . . . . . . . 129
Problems. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131
8 Network Expansion Planning, a Basic Approach . . . . . . . . . . . . . 133
8.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133
8.2 Problem Definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133
8.3 Problem Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134
8.4 Problem Formulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140
8.4.1 Objective Function . . . . . . . . . . . . . . . . . . . . . . . . . 140
8.4.2 Constraints . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141
8.5 Solution Methodologies. . . . . . . . . . . . . . . . . . . . . . . . . . . . 142
8.5.1 Enumeration Method . . . . . . . . . . . . . . . . . . . . . . . 142
8.5.2 Heuristic Methods . . . . . . . . . . . . . . . . . . . . . . . . . 143
8.6 Numerical Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149
8.6.1 Garver Test System . . . . . . . . . . . . . . . . . . . . . . . . 150
8.6.2 A Large Test System . . . . . . . . . . . . . . . . . . . . . . . 150
Contents xi
Problems. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153
9 Network Expansion Planning, an Advanced Approach. . . . . . . . . 155
9.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155
9.2 Problem Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155
9.3 Problem Formulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159
9.3.1 Basic Requirements . . . . . . . . . . . . . . . . . . . . . . . . 159
9.3.2 Objective Functions . . . . . . . . . . . . . . . . . . . . . . . . 162
9.3.3 Constraints . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 164
9.4 Solution Methodology. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 166
9.5 Candidate Selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 166
9.6 Numerical Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 168
Problems. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 171
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 171
10 Reactive Power Planning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 173
10.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 173
10.2 Voltage Performance of a System. . . . . . . . . . . . . . . . . . . . . 174
10.2.1 Voltage Profile. . . . . . . . . . . . . . . . . . . . . . . . . . . . 174
10.2.2 Voltage Stability . . . . . . . . . . . . . . . . . . . . . . . . . . 174
10.2.3 Voltage Performance Control Parameters . . . . . . . . . 176
10.2.4 Static Versus Dynamic Reactive Power Resources . . . 176
10.3 Problem Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 178
10.4 Reactive Power Planning (RPP) for a System . . . . . . . . . . . . 182
10.4.1 Static Reactive Resource Allocation and Sizing . . . . . 182
10.4.2 Dynamic Reactive Resource Allocation and Sizing. . . 184
10.4.3 Solution Procedure . . . . . . . . . . . . . . . . . . . . . . . . . 186
10.5 Numerical Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 187
10.5.1 Small Test System . . . . . . . . . . . . . . . . . . . . . . . . . 187
10.5.2 Large Test System . . . . . . . . . . . . . . . . . . . . . . . . . 189
Problems. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 193
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 194
11 Power System Planning in the Presence of Uncertainties . . . . . . . 197
11.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 197
11.2 Power System De-regulating . . . . . . . . . . . . . . . . . . . . . . . . 198
11.3 Power System Uncertainties. . . . . . . . . . . . . . . . . . . . . . . . . 199
11.3.1 Uncertainties in a Regulated Environment . . . . . . . . . 199
11.3.2 Uncertainties in a De-regulated Environment . . . . . . . 200
11.4 Practical Issues of Power System Planning
in a De-regulated Environment. . . . . . . . . . . . . . . . . . . . . . . 201
xii Contents
11.5 How to Deal with Uncertainties in Power System Planning . . . 204
11.5.1 Expected Cost Criterion . . . . . . . . . . . . . . . . . . . . . 205
11.5.2 Min-max Regret Criterion . . . . . . . . . . . . . . . . . . . . 206
11.5.3 Laplace Criterion . . . . . . . . . . . . . . . . . . . . . . . . . . 207
11.5.4 The Van Neuman–Morgenstern (VNM) Criterion. . . . 207
11.5.5 Hurwicz Criterion. . . . . . . . . . . . . . . . . . . . . . . . . . 207
11.5.6 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 208
12 Research Trends in Power System Planning . . . . . . . . . . . . . . . . 209
12.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 209
12.2 General Observations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 209
12.3 References. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 210
12.3.1 General . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 210
12.3.2 LF (2000 Onward) . . . . . . . . . . . . . . . . . . . . . . . . . 211
12.3.3 GEP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 212
12.3.4 TEP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 214
12.3.5 GEP and TEP . . . . . . . . . . . . . . . . . . . . . . . . . . . . 218
12.3.6 RPP (2000 Onward) . . . . . . . . . . . . . . . . . . . . . . . . 218
12.3.7 Miscellaneous . . . . . . . . . . . . . . . . . . . . . . . . . . . . 219
12.4 Exercise 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 219
12.5 Exercise 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 222
13 A Comprehensive Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 223
13.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 223
13.2 SEP Problem for Sub-transmission Level . . . . . . . . . . . . . . . 223
13.2.1 Basics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 223
13.2.2 System Under Study . . . . . . . . . . . . . . . . . . . . . . . . 224
13.2.3 Input Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 224
13.2.4 Solution Information. . . . . . . . . . . . . . . . . . . . . . . . 224
13.2.5 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 227
13.3 SEP Problem for Transmission Level . . . . . . . . . . . . . . . . . . 229
13.4 NEP Problem for Both Sub-transmission
and Transmission Levels . . . . . . . . . . . . . . . . . . . . . . . . . . . 233
13.5 RPP Problem for Both Sub-transmission
and Transmission Levels . . . . . . . . . . . . . . . . . . . . . . . . . . . 238
13.5.1 Results for 2011. . . . . . . . . . . . . . . . . . . . . . . . . . . 240
13.5.2 Results for 2015. . . . . . . . . . . . . . . . . . . . . . . . . . . 242
Appendix A: DC Load Flow . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 245
Appendix B: A Simple Optimization Problem . . . . . . . . . . . . . . . . . . 249
Appendix C: AutoRegressive Moving Average (ARMA) Modeling. . . . 259
Contents xiii
Appendix D: What is EViews. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 261
Appendix E: The Calculations of the Reliability Indices . . . . . . . . . . . 263
Appendix F: Garver Test System Data. . . . . . . . . . . . . . . . . . . . . . . . 267
Appendix G: Geographical Information System . . . . . . . . . . . . . . . . 271
Appendix H: 84-Bus Test System Data. . . . . . . . . . . . . . . . . . . . . . . . 273
Appendix I: Numerical Details of the Basic Approach . . . . . . . . . . . . 285
Appendix J: 77-Bus Test System Data . . . . . . . . . . . . . . . . . . . . . . . . 287
Appendix K: Numerical Details of the Hybrid Approach . . . . . . . . . . 301
Appendix L: Generated Matlab M-files Codes . . . . . . . . . . . . . . . . . . 307
Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 369
xiv Contents