Thư viện tri thức trực tuyến
Kho tài liệu với 50,000+ tài liệu học thuật
© 2023 Siêu thị PDF - Kho tài liệu học thuật hàng đầu Việt Nam

Dust Explosions in the Process Industries Second Edition phần 7 potx
Nội dung xem thử
Mô tả chi tiết
Propagation of flames in dust clouds 387
Industrial and Engineering Chemistry. Process Design and Developm. 6 pp. 74-84
International Standardization Organization (1985) Explosion Protection Systems. Part I: Determination of Explosion Indices of Combustible Dusts in Air. IS0 618411, ISO, Geneva
Ishihama, W. (1961) Studies on the Critical Explosion Density of Coal Dust Clouds. Proc. of Ilth
Internat. Conf. of Directors of Safety in Mines Research, (Oct.) Warsaw
Ishihama, W., Enomoto, H., and Sekimoto, Y. (1982) Upper Explosion Limits of Coal Dust/
Methane/Air Mixtures. Journal of the Association of the Japanese Mining Industry (in Japanese)
pp. 13-17
Ishii, R. (1983) Shock Waves in Gas-Particle Mixtures. Faculty of Engineering Memoirs 45 Kyoto
University pp. 1-16.
Jacobson, M., Cooper, A. R., and Nagy, J. (1964) Explosibility of Metal Powders. Rep. Inv. 6516,
US Bureau of Mines, Washington
Jaeckel, G. (1924) Die Staubexplosionen. Zeitschrift fiir technische Physik pp. 67-78
Jarosinski, J. (1984) The Thickness of Laminar Flames. Combustion and Flame 56 pp. 337-342
Jarosinski, J., Lee, J. H. S., Knystautas, R., et ai. (1987) Quenching Distance of Self-propagating
Dust/Air Flames. Archivum Combustionis 7 pp. 267-278
Johnson, G. R., Murdoch, P., and Williams, A. (1988) A Study of the Mechanism of the Rapid
Pyrolysis of Single Particles of Coal. Fuel 67 pp. 834-842
Jones, W. P., and Launder, B. E. (1972) The Prediction of Laminarization with a Two-Equation
Model of Turbulence. Int. J. Heat Mass Transfer 15 pp. 301-314
Jones, W. P., and Launder, B. E. (1972) The Calculation of Low-Reynolds-Number Phenomena
with a Two-Equation Model of Turbulence. Int. J. Heat Mass Transfer 16 pp. 11191130
Jouguet, M. (1905) Sur la propagation des reactions chimiques dans les gaz. Chapitre I et 11. Journal
de Mathematiques pura et appliqutes 1 Series 61, pp. 347-425
Jouguet, M. (1906) Sur la propagation des reactions chimiques dans les gaz. Chapitre 111. Journal de
Mathematiques pures et appliquees 2 Series 61, pp. 5-86
Kaesche-Krischer, B., and Zehr, J. (1958) Untersuchungen an StaublLuft-Flammen. Zeitschrift fiir
Physikalische Chemie Neue Folge 14 5/6
Kaesche-Krischer, B. (1959) Untersuchungen an vorgemischten, laminar Staubkuft-Flammen.
Staub 19 pp. 200-203
Kauffman, C. W., Ural, E., Nichols, J. A. et al. (1982) Detonation Waves in Confined Dust
Clouds. Proc. of 3rd Internat. School of Explosibility of Dusts, (5-7 Nov.), Turawa, Poland
Kauffman, C. W., Srinath, S. R., Tezok, F. I., et al. (1984) Turbulent and Accelerating Dust
Flames. Proc. of 20th Symp. (Internat.) Combustion. The Combustion Institute pp. 1701-1708
Kauffman, C. W., Wolanski, P., Arisoy, A., et al. (1984a) Dust, Hybrid and Dusty Detonations.
Progress in Astronautics and Aeronautics 94 pp. 221-240
Kawakami, T., Okajima, S., and Tinuma, K. (1988) Measurement of slow burning velocity by
zero-gravity method. Proc. 22nd Symp. (Int.) on Combustion, The Comb. Inst. pp. 16091613
Khaikin, B. I., Bloshenko, V. N., and Merzhanov, A. G. (1970) Fizika Goreniya i Vzryva 5 No. 4
Kjaldman, L. (1987) Numerical Simulation of Peat Dust Explosions. Research Report No. 469,
Technical Research Centre of Finland, Espoo
Kjaldman, L. (1989) Modelling of peat dust combustion. Proc. of 3rd Internat. PHOENICS User
Conference. (Aug./Sept .) Dubrovnik
Klemens, R., and Wolanski, P. (1986) Flame Structure in Dust/Air and Hybrid/Air Mixtures near
Lean Flammability Limits. Progr. Astronautics and Aeronautics 105 pp. 169-183
Klemens, R., Kotelecki, M., Malanovski, P., et al. (1988) An Investigation of the Mechanism of
Turbulent Dust Combustion. Private communication to Eckhoff
Kong Dehong (1986) Study of Flame Propagation in a Laminar Dust Cloud. M. Eng. Thesis. Dept.
of Metallurgical and Physical Chemistry, Northeast University of Technology, Shenyang,
P. R. China
Krazinski, J. L., Backius, R. O., and Krier, H. (1977) Modelling Coal-Dust/Air Flames with
388 Dust Explosions in the Process Industries
Radiative Tansport. Proc. Spring Meeting Central States Section. (March) The Combustion
Institute, Cleveland, Ohio
Krazinski, J. L., Backius, R. O., and Krier, H. (1978) A Model for Flame Propagation in Low
Volatile Coal-Dust/Air Mixtures. J. Heat Transfer 100 pp. 105-111
Kuchta, J. M. (1985) Investigation of Fire and Explosion Accidents in the Chemical, Mining and
Fuel-Related Industries - A Manual. Bulletin 680, US Bureau of Mines, Washington
Kulikovskii, V. A. (1987) Existence of convergent Chapman-Jouguet Detonation Waves in
Dust-Laden Gas. Fizika Goreniya i Vzryva 23 pp. 3541 (Translated by Plenum Publishing
Corporation)
Launder, B. E., and Spalding, D. B. (1972) Mathematical Models of Turbulence. Academic Press
Lee, J. H. S. (1987) Dust Explosions: An Overview. Proc. Internat. Symp. Shock Tubes and Waves,
Lee, J. H. S., Yi Kang Pu, and Knystautas, R. (1987) Influence of Turbulence in Closed Volume
Lee, J. H. S. (1988) Dust Explosion Parameters, their Measurement and Use. VDZ-Berichte 701
Leuschke, G. (1965) Beitrage zur Erforschung des Mechanismus der Flammenausbreitung in
Staubwolken. Staub 25 pp. 180-186
Levendis, Y. A., Flagan, R. C., and Gavals, G. R. (1989) Oxidation Kinetics of Monodisperse
Spherical Carbonaceous Particles of Variable Properties. Combustion and Flame 76 pp. 221-241
Lewis, B., and von Elbe, G. (1961) Combustion, Flames and Explosion of Gases. 2nd Ed.,
Academic Press
Liebman, I., Cony, J., and Perlee, H. E. (1972) Ignition and Incendivity of Laser Irradiated Single
Micron-Size Magnesium Particles. Combustion Science and Technology 5 pp. 21-30
Lindstedt, R. P., and Michels, H. J. (1989) Deflagration to Detonation Transitions and Strong
Deflagrations in Alkane and AlkaneIAir Mixtures. Combustion and Flame 76 pp. 169-181
Ma, A. S. C., Spalding, D. B., and Sun, L. T. (1982) Application of ‘Escimo’ to Turbulent
HydrogedAir Diffusion flame. Proc. of 19th Symp. (Internat.) on Combustion. The Combustion
Institute pp. 393402
Magnussen, B. F., and Hjertager, B. H. (1976) On Mathematical Modelling of Turbulent Combustion with Special Emphasis on Soot Formation and Combustion. Proc. of 16th Symp.
(Internat.) on Combustion. The Combustion Institute, Pittsburgh pp. 719-729
Mallard, E., and le Chatelier, H. L. (1883) Recherches Experimentales et Theoretiques sur la
Combustion des MClanges Gazeux Explosifs. Annales des Mines 4 p. 379
Malte, P. C., and Dorri, B. (1981) The Behaviour of Fuel Particles in Wood-Waste Furnaces. Proc.
of Spring Meeting, Western States Section, (April), Combustion Institute, Washington State
University
Mason, W. E., and Wilson, M. J. G. (1967) Laminar Flames of Lycopodium Dust in Air.
Combustion and Flame 11 pp. 195-200
Matalon, M. (1982) The Steady Burning of a Solid Particle. SIAM J. Appl. Math. 42 pp. 787-803
Mitsui, R., and Tanaka, T. (1973) Simple Models of Dust Explosion. Predicting Ignition
Temperature and Minimum Explosive Limit in Terms of Particle Size. Ind. Eng. Chem. Process
Des. Develop. 12 pp. 384-389
Moen, I., Lee, J. H. S., and Hjertager, B. H. (1982) Pressure Development due to Turbulent
Flame Propagation in Large-Scale MethaneIAir Explosions. Combustion and Flame 47 pp. 31-52
Moore, P. E. (1979) Characterization of Dust Explosibility: Comparative Study of Test Methods.
Chemistry and Industry 7 p. 430
Nagy, J., Seiler, E. C., Conn, J. W., et al. (1971) Explosion Development in Closed Vessels. Rep.
Inv. No. 7507, US Bureau of Mines, Washington
Nagy, J., Conn, J. W., and Verakis, H. C. (1969) Explosion Development in a Spherical Vessel.
Rep. Inv. 7279, US Bureau of Mines, US Dept. Interior, Washington
Aachen, F. R. Germany, 16: pp. 21-38
Explosion of Dust/Air Mixtures. Archivum Combustionis 7 pp. 279-297
pp. 113-122
Propagation of flames in dust clouds 389
Nagy, J., and Verakis, H. C. (1983) Development and Control of Dust Explosions. Marcel Dekker,
Nelson, L. S., and Richardson, N. L. (1964) The Use of Flash Heating to Study the Combustion of
Nelson, L. S. (1965) Combustion of Zirconium Droplets Ignited by Flash Heating. Pyrodynamics 3
Nettleton, M. A. (1987) Gaseous Detonations: Their Nature, Effects and Control, Chapman and
Hall, London
Neumann, J. von (1942) Progress Report on the Theory of Detonation Waves. Report No. 549,
OSRD
Nomura, S.-I., and Tanaka, T. (1978) Theoretical Discussion of the Flame Propagation Velocity of
a Dust Explosion. The Case of Uniform Dispersion of Monosized Particles. Heat Transfer.
Japanese Research 7 pp. 79-86
Nomura, S.-I., and Tanaka, T. (1980) Prediction of Maximum Rate of Pressure Rise due to Dust
Explosion in Closed Spherical and Non-Spherical Vessels. Ind. Eng. Chem. Process Des. Dev. 19
pp. 451459
Nomura, S.-I., Torimoto, M., and Tanaka, T. (1984) Theoretical Upper Limit of Dust Explosions in
Relation to Oxygen Concentration. Ind. Eng. Chem. Process Des. Dev. 23 pp. 42W23
Nordtest (1989) Dust Clouds: Minimum Explosible Dust Concentration. NT Fire 011, Nordtest,
Helsinki
Nusselt , W. (1924) Der Verbrennungsvorgang in der Kohlenstaubfeuerung. Zeitschrift Ver.
Deutscher Ingenieure 68 pp. 124-128
Ogle, R. A., Beddow, J. K., and Vetter, A. F. (1983) Numerical Modelling of Dust Explosions:
The Influence of Particle Shape on Explosion Intensity. Powder and Bulk Solids Handling and
Processing, Technol. Progr., Internat. Powder Science Institute
Ogle, R. A., Beddow, J. K., Vetter, A. F. (1984) A Thermal Theory of Laminar Premixed Dust
Flame Propagation. Combustion and Flame 58 pp. 77-79
Ogle, R. A., Beddow, J. K., Chen, L. D. (1988) An Investigation of Aluminium Dust Explosions.
Combustion Science and Technology 61 pp. 75-99
Palmer, K. N., and Tonkin, P. S. (1971) Coal Dust Explosions in a Large-Scale Vertical Tube
Apparatus. Combustion and Flame 17 pp. 159-170
Pineau, J. P., and Ronchail, G. (1982) Propagation of Dust Explosions in Ducts. Proc. of
International Symposium: The Control and Prevention of Dust Explosions, (November) Organized by Oyes/IBC, Bade
Pineau, J. P. (1987) Dust Explosions in Pipes, Ducts and Galleries. A State-of-the-Art Report with
Criteria for Industrial Design. Proceedings of Shenyang International Symposium on Dust
Explosions, Sept. 14-16, NEUT, Shenyang, P. R. China
Prentice, J. L. (1970) Combustion of Pulse-Heated Single Particles of Aluminium and Beryllium
Cornbustion Science and Technology 1 pp. 385-398
Proust, C., and Veyssiere, B. (1988) Fundamental Properties of Flames Propagating in Starch
DustlAir Mixtures. Combustion Science and Technology 62 pp. 149-172
Radandt, S. (1989) Explosionsablaufe in Abhangigkeit von Betriebsparametern. VDZ-Berichte 701,
Volume 2. VDI-Verlag, Dusseldorf pp. 801-817
Rae, D. (1971) Coal Dust Explosions in Large Tubes. Proc. of 8th International Shock Tube
Symposium, (July), London
Razdobreev, A. A., Skorik, A. I., and Frolov, Yu.V. (1976) Ignition and Combustion Mechanism
of Aluminium Particles. Fizika Goreniya i Vzryva 12 No. 2 pp. 203-208 (Translated by Plenum
Publishing Corporation)
Richmond, J. K., and Liebman, I. (1975) A Physical Description of Coal Mine Explosions. Proc. of
15th Symp. (Internat.) on Combustion. The Combustion Institute, Pittsburgh, USA pp. 115-126
Richmond, J. K., Liebman, I., Bruszak, A. E., et al. (1978) A Physical Description of Coal Mine
Inc.
Liquid Metal Droplets. The Journal of Physical Chemistry 68 No. 5 pp. 1269-1270
pp. 121-134
390 Dust Explosions in the Process Industries
Explosions. Part 11. Proc. of 17th Symp. (Internat.) on Combustion. The Combustion Institute,
Pittsburgh, USA pp. 1257-1268
Samsonov, V. P. (1984) Flame Propagation in an Impulsive Acceleration Field. Fizika Goreniya i
Vzryva 20 No. 6 pp. 58-61 (Translated by Plenum Publishing Corporation)
Schlapfer, P. (1951) Ueber Staubflammen und Staubexplosionen. Schweiz. Verein von Gas- und
Wasserfachmannern Monatsbulletin No. 3, 31 pp. 69-82
Scholl, E. W. (1981) Brenn- und Explosionsverhalten von Kohlenstaub. Zement-Kalk-Gips No. 5
Schuber, G. (1988) Zunddurchschlagverhalten von Staub-Luft-Gemischen und HybridenGemischen. Publication Series: Humanisierung des Arbeitslebens, Vol. 72 VDI-Verlag,
Dusseldorf
Schuber, G. (1989) Ignition Breakthrough Behaviour of Dust/Air and Hybrid Mixtures through
Narrow Gaps. Proc. of 6th Internat. Symp. Loss Prev. Safety Prom. Proc. Ind., Oslo
Schonewald, I. (1971) Vereinfachte Methode zur Berechnung der unteren Zundgrenze von
StaubLuft-Gemischen. Staub-Reinhalt. Luft 31 pp. 376-378
Selle, H., and Zehr, J. (1957) Experimentaluntersuchungen von Staubverbrannungsvorgangen und
ihre Betrachtung von reaktionsdynamischen Standpunkt. VDZ-Berichte 19 pp. 73-87
Semenov, E. S. (1965) Measurement of Turbulence Characteristics in a Closed Volume with
Artificial Turbulence. Combustion, Explosion and Shock Waves 1 No. 2 pp. 57-62
Semenov, N. N. (1951) Tech. Memo. No. 1282, NACA
Shevchuk, V. G., Kondrat’ev, E. N., Zolotko, A. N., et al. (1979) Effect of the Structure of a Gas
Suspension on the Process of Flame Propagation. Fizika Goreniya i Vzryva 15 No. 6 pp. 4145
(Translated by Plenum Publishing Corporation)
Shevchuk, V. G., Bezrodnykh, A. K., Kondrat’ev, E. N., et al. (1986) Combustion of Airborne
Aluminium Particles in Free Space. Fizika Goreniya i Vzryva 22 No. 5 pp. 40-43 (Translated by
Plenum Publishing Corporation)
Siwek, R. (1977) 20 Liter Laborapparatur fur die Bestimmung der Explosionskennzahlen brennbarer Staube. MSc. Thesis, Winterthur Engineering College, Wintherthur
Slezak, S. E., Buckius, R. O., and Krier, H. (1986) Evidence of the Rich Flammability Limit for
Pulverized Pittsburgh Seam CoaYAir Mixtures. Combustion and Flame 63 pp. 209-215
Smith, I. W. (1971) Kinetics of Combustion of Size-Graded Pulverized Fuels in the Temperature
Range 1200-2270 K. Combustion and Flame 17 pp. 303-4
Smoot, L. D., and Horton, M. D. (1977) Propagation of Laminar Coal-Air Flames. Progr. Energy
Combust. Sci. 3 pp. 235-258
Smoot, L. D., Horton, M. D., and Williams, G. A. (1977) Propagation of Laminar Pulverized
Coal-Air Flames. Proc. of 16th Symp. (Internat.) on Combustion. The Combustion Institute,
pp. 375-387
Spalding, D. B. (1957) Predicting the Laminar Flame Speed in Gases with Temperature-explicit
Reaction Rates. Combustion and Flame 1 pp. 287-295
Spalding, D. B., Stephenson, P. L., and Taylor, R. G. (1971) A Calculation Procedure for the
Prediction of Laminar Flame Speeds. Combustion and Flame 17 p. 55
Spalding, D. B. (1982) Representations of Combustion in Computer Models of Spark Ignition.
Report CFD/82/18, Computational Fluid Dynamic Unit, Imperial College of Science and
Technology, London
Specht, E., and Jeschar, R. (1987) Ermittlung der geschwindigkeitsbestimmenden Mechanismen bei
der Verbrennung von dichten Kohleteilchen. VDZ-Berichte 645 pp. 45-56
Srinath, R. S., Kauffman, C. W., Nicholls, J. A., et al. Flame Propagation due to Layered
Combustible Dusts. Proc. of 10th International Colloquium on Dynamics of Explosions and
Reactive Systems, (August), Berkeley, USA
Taffanel, M. J. (1907) Premiers Essais sur 1’InflammabilitC des Poussieres, Rapport publique par la
ComitC Central des Houill2res de France, Aout
Tai, C. S., Kauffman, C. W., Sichel, M., et al. (1988) Turbulent Dust Combustion in a Jet-Stirred
pp. 227-233
Propagation of flames in dust clouds 39 1
Reactor. Progress in Astronautics and Aeronautics, 113 pp. 62-86
Tamanini, F. (1983) Dust Explosion Propagation in Simulated Grain Conveyor Galleries, Technical
Report FMRC J.I. OFIW.RK, (July), Prepared for National Grain and Feed Association,
Washington DC
Tamanini, F. (1989) Turbulence Effects on Dust Explosion Venting. Proc. of AZChF LOSS
Prevention Symposium, (April 24), Session 8, Plant Layout, Houston
Tamanini, F., and Chaffee, J. L. (1989) Large-Scale Vented Dust Explosions - Effect of Turbulence on Explosion Severity. Technical Report FMRC J.I. OQ2E2.RK, (April), Factory Mutual
Research
Tanford, C., and Pease, R. N. (1947) Theory of Burning Velocity. 11. The Square Root Law for
Burning Velocity. J. Chemical Physics 15 pp. 861-865
Tulis, A. J., and Selman, J. R. (1984) Unconfined Aluminium Particle Two-Phase Detonation in
Air. Progress in Astronautics and Aeronautics 94 pp. 277-292
Tulis, A. J. (1984) Initiation and Propagation of Detonation in Unconfined Clouds of Aluminium
Powder in Air. Proc. of 9th Int. Semin. Pyrotechnics
Ubhayakar, S. K., and Williams, F. A. (1976) Burning and Extinction of a Laser-Ignited Carbon
Particle in Quiescent Mixtures of Oxygen and Nitrogen. Journ. Electrochem. Society 123
Vareide, D., and Sonju, 0. K. (1987) Theoretical Predictions of Char Burn-Off. Report No. STF15
A87044 SINTEF, Trondheim, Norway
Wagner, R., Schulte, A., Miihlen, H.-J., et al. (1987) Laboratoriumsuntersuchungen zum Zunden
und Abbrandgeschwindigkeit bei der Verbrennung einzelner Kohlekorner. VDZ-Berichte 645
Weber, R. 0. (1989) Thermal Theory for Determining the Burning Velocity of a Laminar Flame,
Using the Inflection Point in the Temperature Profile. Combust. Sci. and Tech. 64 pp. 135-139
Weckman, H. (1986) Safe Production and Use of Domestic Fuels. Part 4. Fire and Explosion
Properties of Peat. Research Report No. 448. Technical Research Centre of Finland, Espoo
Wolanski, P. (1977) Numerical Analysis of the Coal Dust/Air Mixtures Combustion. Archivum
Termodynamiki i Spalania 8 pp. 451458
Wolanski, P., Lee, D., Sichel, M., et al. (1984) The Structure of Dust Detonations. Progress in
Astronautics and Aeronautics 94 pp. 242-263
Wolanski, P. (1987) Detonation in Dust Mixtures, Proc. Shenyang Internat. Symp. Dust Expl.
NEUT, Shenyang, P. R. China, pp. 568-598
Wolanski, P. (1988) Oral Statement made at 3rd Internat. Coll. on Dust Explosions, (Oct. 24-28)
Szczyrk, Poland
Yi Kang Pu: (1988) Fundamental Characteristics of Laminar and Turbulent Flames in Cornstarch
Dust/Air Mixtures. (January), Ph.D. Thesis, Dept. Mech. Eng., McGill University
Yi Kang Pu, Mazurkiewicz, J., Jarosinski, J. et al. (1988) Comparative Study of the Influence of
Obstacles on the Propagation of Dust and Gas Flames. Proc. 22nd Symp. (Znt.) on Combustion
The Combustion Institute pp. 1789-1797 Pittsburgh, USA
Zabetakis, M. G. (1965) Flammability Characteristics of Combustible Gases and Vapors. Bulletin
627, US Bureau of Mines, Washington
Zehr, J. (1957) Anleitung zu den Berechnungen uber die Ziindgrenzwerte und die maximalen
Explosionsdriicke. VDI-Berichte 19 pp. 63-68
Zehr, J. (1959) Die Experimentelle Bestimmung der oberen Ziindgrenze von StaubLuftGemischen als Beitrag zur Beurteilung der Staubexplosionsgefahren. Staub 19 pp. 204-214
Zeldovich, Ya.B. (1940) On the Theory of the Propagation of Detonation in Gaseous Systems. J.
Exp. Theor. Phys. USSR 10 p. 524. (Translation: NACA Tech. Memo No. 1261, (1950) pp. 1-50)
Zeldovich, Ya.B., Istratov, A. G., Kidin, N. I., et al. (1980) Flame Propagation in Tubes:
Hydrodynamics and Stability. Combustion Science and Technology 24 pp. 1-13
pp. 747-756
pp. 33-43
Chapter 5
Ignition of dust clouds and dust deposits:
further consideration of some selected
aspects
5.1
WHAT IS IGNITION?
The word ‘ignition’ is only meaningful when applied to substances that are able to
propagate a self-sustained combustion or exothermal decomposition wave. Ignition may
then be defined as the process by which such propagation is initiated.
Ignition occurs when the heat generation rate in some volume of the substance exceeds
the rate of heat dissipation from the volume and continues to do so as the temperature
rises further. Eventually a temperature is reached at which diffusion of reactants controls
the rate of heat generation, and a characteristic stable state of combustion or decomposition is established.
The characteristic dimension of the volume within which ignitionho ignition is decided,
is of the order of the thickness of the front of a self-sustained flame though the mixture.
This is because self-sustained flame propagation can be regarded as a continuing ignition
wave exposing progressively new parts of the cloud to conditions where the heat
generation rate exceeds the rate of heat dissipation. A similar line of thought applies to
propagation of smouldering fires in powder deposits and layers, as discussed in Section
5.2.2.4.
In the ignition process the concepts of stability and instability play a key role. Thorne
(1985) gave an instructive simplified outline of some basic features of the instability theory
of ignition, which will be rendered in the following. In most situations diffusion, molecular
as well as convective, plays a decisive role in the ignition process. Systems that can ignite,
may be characterized by a dimensionless number D,, the Damkohler number, which is the
ratio of the rate of heat production within the system due to exothermic chemical
reactions, to the rate of heat loss from the system by conduction, convection and
radiation. Often D, is expressed as the ratio of two characteristic time constants, one for
the heat loss and one for the heat generation:
D, = TLITG (5.1)
The influence of temperature on the rate of chemical reactions is normally described by
the exponential Arrhenius law:
k = fexp(- EIRT) (5.2)
where k is the rate constant, f the pre-exponential factor or frequency factor, E the
activation energy, R the gas constant and T the absolute temperature.