Siêu thị PDFTải ngay đi em, trời tối mất

Thư viện tri thức trực tuyến

Kho tài liệu với 50,000+ tài liệu học thuật

© 2023 Siêu thị PDF - Kho tài liệu học thuật hàng đầu Việt Nam

Dust Explosions in the Process Industries Second Edition phần 7 potx
PREMIUM
Số trang
66
Kích thước
3.8 MB
Định dạng
PDF
Lượt xem
1430

Dust Explosions in the Process Industries Second Edition phần 7 potx

Nội dung xem thử

Mô tả chi tiết

Propagation of flames in dust clouds 387

Industrial and Engineering Chemistry. Process Design and Developm. 6 pp. 74-84

International Standardization Organization (1985) Explosion Protection Systems. Part I: Determi￾nation of Explosion Indices of Combustible Dusts in Air. IS0 618411, ISO, Geneva

Ishihama, W. (1961) Studies on the Critical Explosion Density of Coal Dust Clouds. Proc. of Ilth

Internat. Conf. of Directors of Safety in Mines Research, (Oct.) Warsaw

Ishihama, W., Enomoto, H., and Sekimoto, Y. (1982) Upper Explosion Limits of Coal Dust/

Methane/Air Mixtures. Journal of the Association of the Japanese Mining Industry (in Japanese)

pp. 13-17

Ishii, R. (1983) Shock Waves in Gas-Particle Mixtures. Faculty of Engineering Memoirs 45 Kyoto

University pp. 1-16.

Jacobson, M., Cooper, A. R., and Nagy, J. (1964) Explosibility of Metal Powders. Rep. Inv. 6516,

US Bureau of Mines, Washington

Jaeckel, G. (1924) Die Staubexplosionen. Zeitschrift fiir technische Physik pp. 67-78

Jarosinski, J. (1984) The Thickness of Laminar Flames. Combustion and Flame 56 pp. 337-342

Jarosinski, J., Lee, J. H. S., Knystautas, R., et ai. (1987) Quenching Distance of Self-propagating

Dust/Air Flames. Archivum Combustionis 7 pp. 267-278

Johnson, G. R., Murdoch, P., and Williams, A. (1988) A Study of the Mechanism of the Rapid

Pyrolysis of Single Particles of Coal. Fuel 67 pp. 834-842

Jones, W. P., and Launder, B. E. (1972) The Prediction of Laminarization with a Two-Equation

Model of Turbulence. Int. J. Heat Mass Transfer 15 pp. 301-314

Jones, W. P., and Launder, B. E. (1972) The Calculation of Low-Reynolds-Number Phenomena

with a Two-Equation Model of Turbulence. Int. J. Heat Mass Transfer 16 pp. 11191130

Jouguet, M. (1905) Sur la propagation des reactions chimiques dans les gaz. Chapitre I et 11. Journal

de Mathematiques pura et appliqutes 1 Series 61, pp. 347-425

Jouguet, M. (1906) Sur la propagation des reactions chimiques dans les gaz. Chapitre 111. Journal de

Mathematiques pures et appliquees 2 Series 61, pp. 5-86

Kaesche-Krischer, B., and Zehr, J. (1958) Untersuchungen an StaublLuft-Flammen. Zeitschrift fiir

Physikalische Chemie Neue Folge 14 5/6

Kaesche-Krischer, B. (1959) Untersuchungen an vorgemischten, laminar Staubkuft-Flammen.

Staub 19 pp. 200-203

Kauffman, C. W., Ural, E., Nichols, J. A. et al. (1982) Detonation Waves in Confined Dust

Clouds. Proc. of 3rd Internat. School of Explosibility of Dusts, (5-7 Nov.), Turawa, Poland

Kauffman, C. W., Srinath, S. R., Tezok, F. I., et al. (1984) Turbulent and Accelerating Dust

Flames. Proc. of 20th Symp. (Internat.) Combustion. The Combustion Institute pp. 1701-1708

Kauffman, C. W., Wolanski, P., Arisoy, A., et al. (1984a) Dust, Hybrid and Dusty Detonations.

Progress in Astronautics and Aeronautics 94 pp. 221-240

Kawakami, T., Okajima, S., and Tinuma, K. (1988) Measurement of slow burning velocity by

zero-gravity method. Proc. 22nd Symp. (Int.) on Combustion, The Comb. Inst. pp. 16091613

Khaikin, B. I., Bloshenko, V. N., and Merzhanov, A. G. (1970) Fizika Goreniya i Vzryva 5 No. 4

Kjaldman, L. (1987) Numerical Simulation of Peat Dust Explosions. Research Report No. 469,

Technical Research Centre of Finland, Espoo

Kjaldman, L. (1989) Modelling of peat dust combustion. Proc. of 3rd Internat. PHOENICS User

Conference. (Aug./Sept .) Dubrovnik

Klemens, R., and Wolanski, P. (1986) Flame Structure in Dust/Air and Hybrid/Air Mixtures near

Lean Flammability Limits. Progr. Astronautics and Aeronautics 105 pp. 169-183

Klemens, R., Kotelecki, M., Malanovski, P., et al. (1988) An Investigation of the Mechanism of

Turbulent Dust Combustion. Private communication to Eckhoff

Kong Dehong (1986) Study of Flame Propagation in a Laminar Dust Cloud. M. Eng. Thesis. Dept.

of Metallurgical and Physical Chemistry, Northeast University of Technology, Shenyang,

P. R. China

Krazinski, J. L., Backius, R. O., and Krier, H. (1977) Modelling Coal-Dust/Air Flames with

388 Dust Explosions in the Process Industries

Radiative Tansport. Proc. Spring Meeting Central States Section. (March) The Combustion

Institute, Cleveland, Ohio

Krazinski, J. L., Backius, R. O., and Krier, H. (1978) A Model for Flame Propagation in Low

Volatile Coal-Dust/Air Mixtures. J. Heat Transfer 100 pp. 105-111

Kuchta, J. M. (1985) Investigation of Fire and Explosion Accidents in the Chemical, Mining and

Fuel-Related Industries - A Manual. Bulletin 680, US Bureau of Mines, Washington

Kulikovskii, V. A. (1987) Existence of convergent Chapman-Jouguet Detonation Waves in

Dust-Laden Gas. Fizika Goreniya i Vzryva 23 pp. 3541 (Translated by Plenum Publishing

Corporation)

Launder, B. E., and Spalding, D. B. (1972) Mathematical Models of Turbulence. Academic Press

Lee, J. H. S. (1987) Dust Explosions: An Overview. Proc. Internat. Symp. Shock Tubes and Waves,

Lee, J. H. S., Yi Kang Pu, and Knystautas, R. (1987) Influence of Turbulence in Closed Volume

Lee, J. H. S. (1988) Dust Explosion Parameters, their Measurement and Use. VDZ-Berichte 701

Leuschke, G. (1965) Beitrage zur Erforschung des Mechanismus der Flammenausbreitung in

Staubwolken. Staub 25 pp. 180-186

Levendis, Y. A., Flagan, R. C., and Gavals, G. R. (1989) Oxidation Kinetics of Monodisperse

Spherical Carbonaceous Particles of Variable Properties. Combustion and Flame 76 pp. 221-241

Lewis, B., and von Elbe, G. (1961) Combustion, Flames and Explosion of Gases. 2nd Ed.,

Academic Press

Liebman, I., Cony, J., and Perlee, H. E. (1972) Ignition and Incendivity of Laser Irradiated Single

Micron-Size Magnesium Particles. Combustion Science and Technology 5 pp. 21-30

Lindstedt, R. P., and Michels, H. J. (1989) Deflagration to Detonation Transitions and Strong

Deflagrations in Alkane and AlkaneIAir Mixtures. Combustion and Flame 76 pp. 169-181

Ma, A. S. C., Spalding, D. B., and Sun, L. T. (1982) Application of ‘Escimo’ to Turbulent

HydrogedAir Diffusion flame. Proc. of 19th Symp. (Internat.) on Combustion. The Combustion

Institute pp. 393402

Magnussen, B. F., and Hjertager, B. H. (1976) On Mathematical Modelling of Turbulent Com￾bustion with Special Emphasis on Soot Formation and Combustion. Proc. of 16th Symp.

(Internat.) on Combustion. The Combustion Institute, Pittsburgh pp. 719-729

Mallard, E., and le Chatelier, H. L. (1883) Recherches Experimentales et Theoretiques sur la

Combustion des MClanges Gazeux Explosifs. Annales des Mines 4 p. 379

Malte, P. C., and Dorri, B. (1981) The Behaviour of Fuel Particles in Wood-Waste Furnaces. Proc.

of Spring Meeting, Western States Section, (April), Combustion Institute, Washington State

University

Mason, W. E., and Wilson, M. J. G. (1967) Laminar Flames of Lycopodium Dust in Air.

Combustion and Flame 11 pp. 195-200

Matalon, M. (1982) The Steady Burning of a Solid Particle. SIAM J. Appl. Math. 42 pp. 787-803

Mitsui, R., and Tanaka, T. (1973) Simple Models of Dust Explosion. Predicting Ignition

Temperature and Minimum Explosive Limit in Terms of Particle Size. Ind. Eng. Chem. Process

Des. Develop. 12 pp. 384-389

Moen, I., Lee, J. H. S., and Hjertager, B. H. (1982) Pressure Development due to Turbulent

Flame Propagation in Large-Scale MethaneIAir Explosions. Combustion and Flame 47 pp. 31-52

Moore, P. E. (1979) Characterization of Dust Explosibility: Comparative Study of Test Methods.

Chemistry and Industry 7 p. 430

Nagy, J., Seiler, E. C., Conn, J. W., et al. (1971) Explosion Development in Closed Vessels. Rep.

Inv. No. 7507, US Bureau of Mines, Washington

Nagy, J., Conn, J. W., and Verakis, H. C. (1969) Explosion Development in a Spherical Vessel.

Rep. Inv. 7279, US Bureau of Mines, US Dept. Interior, Washington

Aachen, F. R. Germany, 16: pp. 21-38

Explosion of Dust/Air Mixtures. Archivum Combustionis 7 pp. 279-297

pp. 113-122

Propagation of flames in dust clouds 389

Nagy, J., and Verakis, H. C. (1983) Development and Control of Dust Explosions. Marcel Dekker,

Nelson, L. S., and Richardson, N. L. (1964) The Use of Flash Heating to Study the Combustion of

Nelson, L. S. (1965) Combustion of Zirconium Droplets Ignited by Flash Heating. Pyrodynamics 3

Nettleton, M. A. (1987) Gaseous Detonations: Their Nature, Effects and Control, Chapman and

Hall, London

Neumann, J. von (1942) Progress Report on the Theory of Detonation Waves. Report No. 549,

OSRD

Nomura, S.-I., and Tanaka, T. (1978) Theoretical Discussion of the Flame Propagation Velocity of

a Dust Explosion. The Case of Uniform Dispersion of Monosized Particles. Heat Transfer.

Japanese Research 7 pp. 79-86

Nomura, S.-I., and Tanaka, T. (1980) Prediction of Maximum Rate of Pressure Rise due to Dust

Explosion in Closed Spherical and Non-Spherical Vessels. Ind. Eng. Chem. Process Des. Dev. 19

pp. 451459

Nomura, S.-I., Torimoto, M., and Tanaka, T. (1984) Theoretical Upper Limit of Dust Explosions in

Relation to Oxygen Concentration. Ind. Eng. Chem. Process Des. Dev. 23 pp. 42W23

Nordtest (1989) Dust Clouds: Minimum Explosible Dust Concentration. NT Fire 011, Nordtest,

Helsinki

Nusselt , W. (1924) Der Verbrennungsvorgang in der Kohlenstaubfeuerung. Zeitschrift Ver.

Deutscher Ingenieure 68 pp. 124-128

Ogle, R. A., Beddow, J. K., and Vetter, A. F. (1983) Numerical Modelling of Dust Explosions:

The Influence of Particle Shape on Explosion Intensity. Powder and Bulk Solids Handling and

Processing, Technol. Progr., Internat. Powder Science Institute

Ogle, R. A., Beddow, J. K., Vetter, A. F. (1984) A Thermal Theory of Laminar Premixed Dust

Flame Propagation. Combustion and Flame 58 pp. 77-79

Ogle, R. A., Beddow, J. K., Chen, L. D. (1988) An Investigation of Aluminium Dust Explosions.

Combustion Science and Technology 61 pp. 75-99

Palmer, K. N., and Tonkin, P. S. (1971) Coal Dust Explosions in a Large-Scale Vertical Tube

Apparatus. Combustion and Flame 17 pp. 159-170

Pineau, J. P., and Ronchail, G. (1982) Propagation of Dust Explosions in Ducts. Proc. of

International Symposium: The Control and Prevention of Dust Explosions, (November) Orga￾nized by Oyes/IBC, Bade

Pineau, J. P. (1987) Dust Explosions in Pipes, Ducts and Galleries. A State-of-the-Art Report with

Criteria for Industrial Design. Proceedings of Shenyang International Symposium on Dust

Explosions, Sept. 14-16, NEUT, Shenyang, P. R. China

Prentice, J. L. (1970) Combustion of Pulse-Heated Single Particles of Aluminium and Beryllium

Cornbustion Science and Technology 1 pp. 385-398

Proust, C., and Veyssiere, B. (1988) Fundamental Properties of Flames Propagating in Starch

DustlAir Mixtures. Combustion Science and Technology 62 pp. 149-172

Radandt, S. (1989) Explosionsablaufe in Abhangigkeit von Betriebsparametern. VDZ-Berichte 701,

Volume 2. VDI-Verlag, Dusseldorf pp. 801-817

Rae, D. (1971) Coal Dust Explosions in Large Tubes. Proc. of 8th International Shock Tube

Symposium, (July), London

Razdobreev, A. A., Skorik, A. I., and Frolov, Yu.V. (1976) Ignition and Combustion Mechanism

of Aluminium Particles. Fizika Goreniya i Vzryva 12 No. 2 pp. 203-208 (Translated by Plenum

Publishing Corporation)

Richmond, J. K., and Liebman, I. (1975) A Physical Description of Coal Mine Explosions. Proc. of

15th Symp. (Internat.) on Combustion. The Combustion Institute, Pittsburgh, USA pp. 115-126

Richmond, J. K., Liebman, I., Bruszak, A. E., et al. (1978) A Physical Description of Coal Mine

Inc.

Liquid Metal Droplets. The Journal of Physical Chemistry 68 No. 5 pp. 1269-1270

pp. 121-134

390 Dust Explosions in the Process Industries

Explosions. Part 11. Proc. of 17th Symp. (Internat.) on Combustion. The Combustion Institute,

Pittsburgh, USA pp. 1257-1268

Samsonov, V. P. (1984) Flame Propagation in an Impulsive Acceleration Field. Fizika Goreniya i

Vzryva 20 No. 6 pp. 58-61 (Translated by Plenum Publishing Corporation)

Schlapfer, P. (1951) Ueber Staubflammen und Staubexplosionen. Schweiz. Verein von Gas- und

Wasserfachmannern Monatsbulletin No. 3, 31 pp. 69-82

Scholl, E. W. (1981) Brenn- und Explosionsverhalten von Kohlenstaub. Zement-Kalk-Gips No. 5

Schuber, G. (1988) Zunddurchschlagverhalten von Staub-Luft-Gemischen und Hybriden￾Gemischen. Publication Series: Humanisierung des Arbeitslebens, Vol. 72 VDI-Verlag,

Dusseldorf

Schuber, G. (1989) Ignition Breakthrough Behaviour of Dust/Air and Hybrid Mixtures through

Narrow Gaps. Proc. of 6th Internat. Symp. Loss Prev. Safety Prom. Proc. Ind., Oslo

Schonewald, I. (1971) Vereinfachte Methode zur Berechnung der unteren Zundgrenze von

StaubLuft-Gemischen. Staub-Reinhalt. Luft 31 pp. 376-378

Selle, H., and Zehr, J. (1957) Experimentaluntersuchungen von Staubverbrannungsvorgangen und

ihre Betrachtung von reaktionsdynamischen Standpunkt. VDZ-Berichte 19 pp. 73-87

Semenov, E. S. (1965) Measurement of Turbulence Characteristics in a Closed Volume with

Artificial Turbulence. Combustion, Explosion and Shock Waves 1 No. 2 pp. 57-62

Semenov, N. N. (1951) Tech. Memo. No. 1282, NACA

Shevchuk, V. G., Kondrat’ev, E. N., Zolotko, A. N., et al. (1979) Effect of the Structure of a Gas

Suspension on the Process of Flame Propagation. Fizika Goreniya i Vzryva 15 No. 6 pp. 4145

(Translated by Plenum Publishing Corporation)

Shevchuk, V. G., Bezrodnykh, A. K., Kondrat’ev, E. N., et al. (1986) Combustion of Airborne

Aluminium Particles in Free Space. Fizika Goreniya i Vzryva 22 No. 5 pp. 40-43 (Translated by

Plenum Publishing Corporation)

Siwek, R. (1977) 20 Liter Laborapparatur fur die Bestimmung der Explosionskennzahlen brenn￾barer Staube. MSc. Thesis, Winterthur Engineering College, Wintherthur

Slezak, S. E., Buckius, R. O., and Krier, H. (1986) Evidence of the Rich Flammability Limit for

Pulverized Pittsburgh Seam CoaYAir Mixtures. Combustion and Flame 63 pp. 209-215

Smith, I. W. (1971) Kinetics of Combustion of Size-Graded Pulverized Fuels in the Temperature

Range 1200-2270 K. Combustion and Flame 17 pp. 303-4

Smoot, L. D., and Horton, M. D. (1977) Propagation of Laminar Coal-Air Flames. Progr. Energy

Combust. Sci. 3 pp. 235-258

Smoot, L. D., Horton, M. D., and Williams, G. A. (1977) Propagation of Laminar Pulverized

Coal-Air Flames. Proc. of 16th Symp. (Internat.) on Combustion. The Combustion Institute,

pp. 375-387

Spalding, D. B. (1957) Predicting the Laminar Flame Speed in Gases with Temperature-explicit

Reaction Rates. Combustion and Flame 1 pp. 287-295

Spalding, D. B., Stephenson, P. L., and Taylor, R. G. (1971) A Calculation Procedure for the

Prediction of Laminar Flame Speeds. Combustion and Flame 17 p. 55

Spalding, D. B. (1982) Representations of Combustion in Computer Models of Spark Ignition.

Report CFD/82/18, Computational Fluid Dynamic Unit, Imperial College of Science and

Technology, London

Specht, E., and Jeschar, R. (1987) Ermittlung der geschwindigkeitsbestimmenden Mechanismen bei

der Verbrennung von dichten Kohleteilchen. VDZ-Berichte 645 pp. 45-56

Srinath, R. S., Kauffman, C. W., Nicholls, J. A., et al. Flame Propagation due to Layered

Combustible Dusts. Proc. of 10th International Colloquium on Dynamics of Explosions and

Reactive Systems, (August), Berkeley, USA

Taffanel, M. J. (1907) Premiers Essais sur 1’InflammabilitC des Poussieres, Rapport publique par la

ComitC Central des Houill2res de France, Aout

Tai, C. S., Kauffman, C. W., Sichel, M., et al. (1988) Turbulent Dust Combustion in a Jet-Stirred

pp. 227-233

Propagation of flames in dust clouds 39 1

Reactor. Progress in Astronautics and Aeronautics, 113 pp. 62-86

Tamanini, F. (1983) Dust Explosion Propagation in Simulated Grain Conveyor Galleries, Technical

Report FMRC J.I. OFIW.RK, (July), Prepared for National Grain and Feed Association,

Washington DC

Tamanini, F. (1989) Turbulence Effects on Dust Explosion Venting. Proc. of AZChF LOSS

Prevention Symposium, (April 24), Session 8, Plant Layout, Houston

Tamanini, F., and Chaffee, J. L. (1989) Large-Scale Vented Dust Explosions - Effect of Turbu￾lence on Explosion Severity. Technical Report FMRC J.I. OQ2E2.RK, (April), Factory Mutual

Research

Tanford, C., and Pease, R. N. (1947) Theory of Burning Velocity. 11. The Square Root Law for

Burning Velocity. J. Chemical Physics 15 pp. 861-865

Tulis, A. J., and Selman, J. R. (1984) Unconfined Aluminium Particle Two-Phase Detonation in

Air. Progress in Astronautics and Aeronautics 94 pp. 277-292

Tulis, A. J. (1984) Initiation and Propagation of Detonation in Unconfined Clouds of Aluminium

Powder in Air. Proc. of 9th Int. Semin. Pyrotechnics

Ubhayakar, S. K., and Williams, F. A. (1976) Burning and Extinction of a Laser-Ignited Carbon

Particle in Quiescent Mixtures of Oxygen and Nitrogen. Journ. Electrochem. Society 123

Vareide, D., and Sonju, 0. K. (1987) Theoretical Predictions of Char Burn-Off. Report No. STF15

A87044 SINTEF, Trondheim, Norway

Wagner, R., Schulte, A., Miihlen, H.-J., et al. (1987) Laboratoriumsuntersuchungen zum Zunden

und Abbrandgeschwindigkeit bei der Verbrennung einzelner Kohlekorner. VDZ-Berichte 645

Weber, R. 0. (1989) Thermal Theory for Determining the Burning Velocity of a Laminar Flame,

Using the Inflection Point in the Temperature Profile. Combust. Sci. and Tech. 64 pp. 135-139

Weckman, H. (1986) Safe Production and Use of Domestic Fuels. Part 4. Fire and Explosion

Properties of Peat. Research Report No. 448. Technical Research Centre of Finland, Espoo

Wolanski, P. (1977) Numerical Analysis of the Coal Dust/Air Mixtures Combustion. Archivum

Termodynamiki i Spalania 8 pp. 451458

Wolanski, P., Lee, D., Sichel, M., et al. (1984) The Structure of Dust Detonations. Progress in

Astronautics and Aeronautics 94 pp. 242-263

Wolanski, P. (1987) Detonation in Dust Mixtures, Proc. Shenyang Internat. Symp. Dust Expl.

NEUT, Shenyang, P. R. China, pp. 568-598

Wolanski, P. (1988) Oral Statement made at 3rd Internat. Coll. on Dust Explosions, (Oct. 24-28)

Szczyrk, Poland

Yi Kang Pu: (1988) Fundamental Characteristics of Laminar and Turbulent Flames in Cornstarch

Dust/Air Mixtures. (January), Ph.D. Thesis, Dept. Mech. Eng., McGill University

Yi Kang Pu, Mazurkiewicz, J., Jarosinski, J. et al. (1988) Comparative Study of the Influence of

Obstacles on the Propagation of Dust and Gas Flames. Proc. 22nd Symp. (Znt.) on Combustion

The Combustion Institute pp. 1789-1797 Pittsburgh, USA

Zabetakis, M. G. (1965) Flammability Characteristics of Combustible Gases and Vapors. Bulletin

627, US Bureau of Mines, Washington

Zehr, J. (1957) Anleitung zu den Berechnungen uber die Ziindgrenzwerte und die maximalen

Explosionsdriicke. VDI-Berichte 19 pp. 63-68

Zehr, J. (1959) Die Experimentelle Bestimmung der oberen Ziindgrenze von StaubLuft￾Gemischen als Beitrag zur Beurteilung der Staubexplosionsgefahren. Staub 19 pp. 204-214

Zeldovich, Ya.B. (1940) On the Theory of the Propagation of Detonation in Gaseous Systems. J.

Exp. Theor. Phys. USSR 10 p. 524. (Translation: NACA Tech. Memo No. 1261, (1950) pp. 1-50)

Zeldovich, Ya.B., Istratov, A. G., Kidin, N. I., et al. (1980) Flame Propagation in Tubes:

Hydrodynamics and Stability. Combustion Science and Technology 24 pp. 1-13

pp. 747-756

pp. 33-43

Chapter 5

Ignition of dust clouds and dust deposits:

further consideration of some selected

aspects

5.1

WHAT IS IGNITION?

The word ‘ignition’ is only meaningful when applied to substances that are able to

propagate a self-sustained combustion or exothermal decomposition wave. Ignition may

then be defined as the process by which such propagation is initiated.

Ignition occurs when the heat generation rate in some volume of the substance exceeds

the rate of heat dissipation from the volume and continues to do so as the temperature

rises further. Eventually a temperature is reached at which diffusion of reactants controls

the rate of heat generation, and a characteristic stable state of combustion or decomposi￾tion is established.

The characteristic dimension of the volume within which ignitionho ignition is decided,

is of the order of the thickness of the front of a self-sustained flame though the mixture.

This is because self-sustained flame propagation can be regarded as a continuing ignition

wave exposing progressively new parts of the cloud to conditions where the heat

generation rate exceeds the rate of heat dissipation. A similar line of thought applies to

propagation of smouldering fires in powder deposits and layers, as discussed in Section

5.2.2.4.

In the ignition process the concepts of stability and instability play a key role. Thorne

(1985) gave an instructive simplified outline of some basic features of the instability theory

of ignition, which will be rendered in the following. In most situations diffusion, molecular

as well as convective, plays a decisive role in the ignition process. Systems that can ignite,

may be characterized by a dimensionless number D,, the Damkohler number, which is the

ratio of the rate of heat production within the system due to exothermic chemical

reactions, to the rate of heat loss from the system by conduction, convection and

radiation. Often D, is expressed as the ratio of two characteristic time constants, one for

the heat loss and one for the heat generation:

D, = TLITG (5.1)

The influence of temperature on the rate of chemical reactions is normally described by

the exponential Arrhenius law:

k = fexp(- EIRT) (5.2)

where k is the rate constant, f the pre-exponential factor or frequency factor, E the

activation energy, R the gas constant and T the absolute temperature.

Tải ngay đi em, còn do dự, trời tối mất!