Siêu thị PDFTải ngay đi em, trời tối mất

Thư viện tri thức trực tuyến

Kho tài liệu với 50,000+ tài liệu học thuật

© 2023 Siêu thị PDF - Kho tài liệu học thuật hàng đầu Việt Nam

Disassembly automotive : Automoted systems with congnitive ablities
PREMIUM
Số trang
205
Kích thước
10.0 MB
Định dạng
PDF
Lượt xem
1543

Disassembly automotive : Automoted systems with congnitive ablities

Nội dung xem thử

Mô tả chi tiết

Series Editors: Christoph Herrmann, Sami Kara

Sustainable Production, Life Cycle Engineering and Management

Supachai Vongbunyong

Wei Hua Chen

Disassembly

Automation

Automated Systems with Cognitive

Abilities

Sustainable Production, Life Cycle Engineering

and Management

Series editors

Christoph Herrmann, Braunschweig, Germany

Sami Kara, Sydney, Australia

Modern production enables a high standard of living worldwide through products

and services. Global responsibility requires a comprehensive integration of sustain￾able development fostered by new paradigms, innovative technologies, methods and

tools as well as business models. Minimizing material and energy usage, adapting

material and energy flows to better fit natural process capacities, and changing con￾sumption behaviour are important aspects of future production. A life cycle per￾spective and an integrated economic, ecological and social evaluation are essential

requirements in management and engineering. This series will focus on the issues

and latest developments towards sustainability in production based on life cycle

thinking.

More information about this series at http://www.springer.com/series/10615

Supachai Vongbunyong · Wei Hua Chen

1 3

Disassembly Automation

Automated Systems with Cognitive Abilities

Supachai Vongbunyong

School of Mechanical and Manufacturing

Engineering, Sustainable Manufacturing

and Life Cycle Engineering Research

Group

University of New South Wales

Sydney

Australia

Springer Cham Heidelberg New York Dordrecht London

© Springer International Publishing Switzerland 2015

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part

of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations,

recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission or

information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar

methodology now known or hereafter developed.

The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication

does not imply, even in the absence of a specific statement, that such names are exempt from the relevant

protective laws and regulations and therefore free for general use.

The publisher, the authors and the editors are safe to assume that the advice and information in this book

are believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the

editors give a warranty, express or implied, with respect to the material contained herein or for any errors

or omissions that may have been made.

Printed on acid-free paper

Springer International Publishing AG Switzerland is part of Springer Science+Business Media

(www.springer.com)

ISSN 2194-0541 ISSN 2194-055X (electronic)

Sustainable Production, Life Cycle Engineering and Management

ISBN 978-3-319-15182-3 ISBN 978-3-319-15183-0 (eBook)

DOI 10.1007/978-3-319-15183-0

Library of Congress Control Number: 2015932072

Wei Hua Chen

School of Mechanical and Manufacturing

Engineering, Sustainable Manufacturing

and Life Cycle Engineering Research

Group

University of New South Wales

Sydney

Australia

Dedicated to Our Families

Arpa and Sumeth Vongbunyong,

Prapassri Leekphai

—Supachai Vongbunyong

vii

Foreword

Disassembly, as a step in the treatment of end-of-life products, can allow

the recovery of embodied value left within disposed products as well as the

appropriate separation of potentially hazardous components. In the end-of-life

(EOL) treatment industries, disassembly has largely been limited to manual labor,

which is expensive in developed countries. Automation is one possible solution for

economic feasibility. However, the efforts of disassembly automation have been

hindered due to the uncertainty and the complexity associated with disassembly

processes.

In this book, the authors present a number of aspects to be considered in the

development of disassembly automation, including the mechanical system, vision

system and intelligent planner. In addition, unlike automation for assembly

processes, disassembly automation needs to deal with a number of complexities

and uncertainties in products and process levels. In order to address this problem,

a principle of cognitive robotics is implemented on the system to increase the

flexibility and the degree of autonomy required. The proposed cognitive robotics

system has been tested and validated by using the EOL LCD screens.

The cognitive robotic application in disassembly represents a critical step

forward in the current state of research with an application-oriented scope. As

a result it paves the way towards achieving automation in disassembly, hence

progress in industry and in the research towards sustainability in production.

Prof. Christoph Herrmann

Technische Universität Braunschweig

Prof. Sami Kara

The University of New South Wales

ix

As the world’s population exponentially grows, consumption rates and the demand

for new products also increase dramatically. As a consequence, a great number of

end-of-life (EOL) products are continuously being disposed of, leading to a num￾ber of environmental problems. Responsible EOL treatment—which may include

reusing, recycling or remanufacturing products or parts—is desirable in dealing

with these disposed products. These processes can be beneficial both environmen￾tally and economically. Waste is minimised, while valuable components and mate￾rials are recovered.

The disassembly of products is one of the primary steps of EOL treatment pro￾cesses, and involves the extraction and segregation of the desired components,

parts or materials from the product. Disassembly does not only input towards EOL

treatment, but also allows the repair and maintenance of products. However, most

of this process is economically infeasible due to time consumption, process diffi￾culty and expensive labour costs. Consequently, the option of disassembly is often

ignored in industry.

Replacement of human labour by automation has been successful in increasing

the cost-effectiveness of many industries, especially manufacturing and production

processes. Therefore, the implementation of an automated system in the disassem￾bly process is considered as one possible solution. However, the disassembly pro￾cess involves a number of challenging problems and cannot be considered as the

reversal of the assembly process. A number of difficulties arise due to three main

aspects: the physical uncertainties associated with the end-of-life product condi￾tion, the large variety within the one product category, and complexities in process

planning and operation. Therefore, disassembly automation needs to be designed

to be flexible and is robust enough to overcome these issues.

This book provides an overview of the design of disassembly automation,

along with a case study example of the development of a new system based on

the research, “Cognitive robotics in the disassembly of products”, conducted at

the University of New South Wales, Australia. The general concept of product dis￾assembly is introduced and a review of the existing disassembly automation sys￾tems is presented. After that, the book provides an overview of the general system

Preface

x Preface

set-up, followed by detail into each primary operating module of the automated

system. This book is organised as follows.

Chapter 1 describes the importance of product disassembly as a key step in the

end-of-life treatment process. This chapter also presents an overview of the current

research direction in the field of disassembly.

Chapter 2 provides an overview and literature review of the disassembly

process. The literature shows that a number of techniques have already been

developed at the planning and operational levels, typically for optimising the dis￾assembly process for economic feasibility. These techniques can be implemented

in both manual and autonomous disassembly.

Chapter 3 considers the disassembly system as the integration of a number of

operating modules working together to achieve the goal. An overview of this con￾figuration is described. Existing research regarding the development of a (semi-)

autonomous disassembly system and disassembly tools is reviewed. In addi￾tion, the set-up of the workstation and system framework used in this research is

explained.

Chapter 4 provides an overview of perception in the disassembly system.

Detection techniques, in regard to hardware and software used in existing research,

are reviewed. This chapter also describes the implementation of the vision system

in this research, including the detection of components based on common features

and coordinate mapping using the depth camera.

Chapter 5 explains the principle of cognitive robotics. The cognitive robotics

agent is an intelligent planner that controls the behaviour of the system in order to

overcome the variations and uncertainties in the disassembly process. The behav￾iour is influenced by four cognitive functions, namely reasoning, execution moni￾toring, learning and revision.

Chapter 6 describes the integration of the aforementioned operating modules

into a complete disassembly system. The software system applies the vision sys￾tem, operation plans and the principle of cognitive robotics to a disassembly cell

specifically designed for disassembling LCD screens. The detailed configuration

of the system and additional information specific to the case-study product are also

explained.

Chapter 7 presents the conclusions developed as a result of this research in the

development of a disassembly automation system. Technical perspectives of the

system, its economic feasibility and the future work are also presented.

xi

First, we would like to thank our supervisors Profs. Sami Kara and Maurice

Pagnucco for the great opportunity given to us to work on this exciting research

topic. They have always given the best support in terms of research direction,

theory and technical help, which have been crucial in producing this work.

Next, we would like to thank the School of Mechanical and Manufacturing

Engineering for their provision of research funding and facilities. In addition, we

would like to thank the workshop and technical staff members, Martyn, Seetha,

Russell, Alfred, Ian, Andy, Subash, Radha and Steve, for their great technical

support and the manufacture of the hardware parts. We would like to thank Drs.

Erik van Voorthuysen and David Rajaratnam (CSE) for their valuable suggestions

and comments in the early stage of the disassembly cell set-up in regard to robot￾ics and programming. In addition, we would like to thank TAD NSW Disability

Services for supplying and donating LCD screens for testing.

We would also like to thank the members of the Sustainable Manufacturing

and Life Cycle Engineering Research Group (SMLCE@UNSW), in particular

Dr. Suphunnika Ibbotson, Dr. Wen Li, Dr. Seung Jin Kim, Dr. Bernard Kornfeld,

Dr. Kanda Boonsothonsatit, Dr. Rachata Khumboon, Pouya Ghadimi Karahrodi,

SeyedHamed MoosaviRad, Smaeil Mousavi, Wei Lau, Samira Alvandi and Scott

Ibbotson, for the sharing of ideas, valuable comments, their warm welcomes

and all the other assistance that they have provided. Moreover, we would like to

thank our German colleagues, in particular Prof. Dr.-Ing. Christoph Herrmann,

Dr. Tobius Luger, Gerrit Bogdanski and other researchers from JGARG for their

insights into the disassembly of LCD screens, LCA and manufacturing.

I, Wei Hua, would additionally like to thank the crew at UNSW Mechatronics,

in particular Dr. Mark Whitty, Dr. Jose Guivant, Dr. Ngai Kwok and Michael

Woods for the technical and personal support they have provided, and all I have

learnt in our various conversations. Thanks also to the MoFA group at the Institute

of Machine Tools and Production Technology (IWF), TU Braunschweig, where I

Acknowledgments

xii Acknowledgments

stayed while writing and editing a part of this book, for their welcome reception

and support, as well as their ready provision of resources. Thank you to my family,

my friends and God, for bringing me to the point where I am now.

I, Supachai, would also like to thank most importantly my family, particu￾larly my beloved father, mother and wife for the lifelong support given me at all

times.

Supachai Vongbunyong

Wei Hua Chen

xiii

Contents

1 Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1 End-of-Life Product Treatment. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Disassembly of Products. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.2.1 Research Directions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.2.2 Automated Disassembly. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

References. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2 General Disassembly Process. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.1 Disassembly Process Planning (DPP). . . . . . . . . . . . . . . . . . . . . . . . 9

2.1.1 Difficulties in Disassembly. . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.1.2 Representation of Product Structure. . . . . . . . . . . . . . . . . . . . 12

2.1.3 Disassembly Process Representation. . . . . . . . . . . . . . . . . . . 13

2.1.4 Disassembly Sequence Planning (DSP). . . . . . . . . . . . . . . . . 16

2.2 Completeness of Disassembly. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

2.3 Disassembly Operations. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

2.3.1 Types of Fasteners. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

2.3.2 Dismantling Techniques. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

2.4 Conclusions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

References. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

3 Disassembly Automation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

3.1 Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

3.2 Principle of Disassembly Automation. . . . . . . . . . . . . . . . . . . . . . . . 27

3.3 Mechanical Design and Control. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

3.3.1 Manipulator. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

3.3.2 Disassembly Tools. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

3.3.3 Handling Devices. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

3.4 Degree of Autonomy. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

3.4.1 Semi-automatic Disassembly. . . . . . . . . . . . . . . . . . . . . . . . . 40

3.4.2 Fully Automatic Disassembly System. . . . . . . . . . . . . . . . . . 44

xiv Contents

3.5 System Setup in This Research. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

3.6 Conclusions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

References. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

4 Vision System. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

4.1 Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

4.1.1 Why a Vision System?. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

4.1.2 General Requirements. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

4.2 System Setup. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

4.2.1 Sensor Technologies. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

4.2.2 Comparative Summary. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

4.2.3 Overview of Configuration. . . . . . . . . . . . . . . . . . . . . . . . . . . 63

4.2.4 Calibration and Localisation. . . . . . . . . . . . . . . . . . . . . . . . . 65

4.3 Recognition Techniques. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

4.3.1 Thresholding. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

4.3.2 Edge Detection and Contour Geometry. . . . . . . . . . . . . . . . . 72

4.3.3 Template Matching. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

4.3.4 Keypoint Feature Matching. . . . . . . . . . . . . . . . . . . . . . . . . . 74

4.3.5 Semantic/Relational Features. . . . . . . . . . . . . . . . . . . . . . . . . 75

4.3.6 Further Classification Methods. . . . . . . . . . . . . . . . . . . . . . . 76

4.3.7 Conclusions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

4.4 Requirements and Functionality. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

4.4.1 Product Detection. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

4.4.2 Main Component Detection. . . . . . . . . . . . . . . . . . . . . . . . . . 79

4.4.3 Connective Component Detection. . . . . . . . . . . . . . . . . . . . . 84

4.4.4 State Change Detection for Execution Monitoring. . . . . . . . 87

4.4.5 Extensibility. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

4.5 Conclusions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

References. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

5 Cognitive Robotics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

5.1 Autonomous Robot and Cognitive Robotics. . . . . . . . . . . . . . . . . . . 95

5.2 Concept Overview. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

5.2.1 Human Driven Disassembly. . . . . . . . . . . . . . . . . . . . . . . . . . 98

5.2.2 Agent Emulating Human Behaviour. . . . . . . . . . . . . . . . . . . 100

5.3 System Architecture and Cognitive Functions. . . . . . . . . . . . . . . . . . 101

5.3.1 Operation Modules and Uncertainties. . . . . . . . . . . . . . . . . . 101

5.3.2 Architecture. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

5.3.3 Language Framework and Interactions. . . . . . . . . . . . . . . . . 105

5.4 Basic Behaviour Control. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108

5.4.1 Disassembly Domain. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108

5.4.2 Reasoning. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

5.4.3 Execution Monitoring. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

5.5 Advanced Behaviour Control. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114

5.5.1 Knowledge Base. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115

Contents xv

5.5.2 Learning. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118

5.5.3 Learning by Demonstration. . . . . . . . . . . . . . . . . . . . . . . . . . 119

5.5.4 Revision. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122

5.6 Implementation Procedure. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126

5.7 Conclusions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127

References. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127

6 Implementation and Case-Study. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129

6.1 Implementation Overview. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129

6.2 Product Analysis. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131

6.2.1 Case-Study Product: LCD Screens. . . . . . . . . . . . . . . . . . . . . 131

6.2.2 End-of-Life Treatment of LCD Screen Monitors. . . . . . . . . . 131

6.2.3 Structure Analysis and Components. . . . . . . . . . . . . . . . . . . 132

6.3 Disassembly Requirements. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135

6.4 System Overview. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136

6.4.1 Levels of Control and Operating Modules. . . . . . . . . . . . . . . 136

6.5 Cognitive Robotic Module. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140

6.5.1 Design and Functions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140

6.6 Vision System Module. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145

6.6.1 Design and Functions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145

6.6.2 Performance. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149

6.7 Disassembly Operation Unit Module. . . . . . . . . . . . . . . . . . . . . . . . . 152

6.7.1 Hardware Design and Functions. . . . . . . . . . . . . . . . . . . . . . 152

6.7.2 Functions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153

6.8 Experiment. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 158

6.8.1 Process Flow. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 158

6.8.2 Key Performance Indices. . . . . . . . . . . . . . . . . . . . . . . . . . . . 164

6.8.3 Performance Testing—Flexibility of the System. . . . . . . . . . 165

6.8.4 Performance Testing—Learning and Revision. . . . . . . . . . . . 170

6.8.5 Conclusion and Future Improvement. . . . . . . . . . . . . . . . . . . 173

6.9 Conclusions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 174

References. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 174

7 Conclusions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 177

7.1 Conclusion in Technical Perspectives. . . . . . . . . . . . . . . . . . . . . . . . 177

7.1.1 Disassembly Operation Module. . . . . . . . . . . . . . . . . . . . . . . 177

7.1.2 Vision System Module. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 179

7.1.3 Cognitive Robotics Module. . . . . . . . . . . . . . . . . . . . . . . . . . 180

7.1.4 Flexibility to Deal with Uncertainties. . . . . . . . . . . . . . . . . . 182

7.2 Economic Feasibility. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 183

7.3 Conclusions of the Research. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 184

7.3.1 Conclusions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 184

7.3.2 Future Work. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 184

Reference. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 185

xvi Contents

Appendix A: Actions and Fluents. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 187

Appendix B: Graphic User Interface. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 189

Index. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 191

Tải ngay đi em, còn do dự, trời tối mất!