Thư viện tri thức trực tuyến
Kho tài liệu với 50,000+ tài liệu học thuật
© 2023 Siêu thị PDF - Kho tài liệu học thuật hàng đầu Việt Nam

Determination of a time-dependent term in the right hand side of linear parabolic equations
Nội dung xem thử
Mô tả chi tiết
Tf* r*.
Bùi Việt Hương Tap chi KHOA HOC & CONG NGHE 135(05): 139 - 143
D E T E R M IN A T IO N O F A T IM E -D E P E N D E N T T E R M IN T H E R IG H T H A N D
S ID E O F L IN E A R P A R A B O L IC E Q U A T IO N S
B ù i V iệ t H ương*
College of Science, Thainguyen University, Vietnam
A BSTRA CT
We propose a variational method for determining a time-dependent term in the
right hand side of parabolic equations from integral observations. It is proved that
the functional to be minimized is Frechet differentiable and a formula for its gradient
is derived via an adjoint problem. The problem is discretized by the finite difference
methods and then he conjugate gradient method in coupling with Tikhonov regularization is applied for numerically solving it. Numerical results are presented showing
that our technique is efficient.
K ey w o rd s: Inverse problems, ill-posed problems, integral observations, finite difference method, conjugate gradient method.
1 Introduction
Let O be an open bounded domain in R” . Denote by <90 the boundary of 0 , Q := 0 x (0, T],
and S := <90 x (0, T]. Consider the following
problem
— g(x, t). (X, t) G S.
ut - A u = f{t)<p(x, t) + ip(x, t), (x, t) 6 Q,
zi(rr, 0) = u o ( x ) .x £ f l,
du
. dv
(1.1)
Here, v is the outer normal to <90. And G
L°°(Q), ip{x,t) G L 2(Q), e, I 2(0),
g{x,t) G L 2{S). Furthermore, it is assumed
that ip > ip > 0, with \p being a given constant.
To introduce the concept of weak solution,
we use the ’ standard Sobolev spaces
//¿(O ), H 1,0(Q) and t f u (Q) [3, 5, 6]. Further, for a Banach space B , we define
L2(0 ,T ;B ) = {u : u (t) G B a.e. t G
(0, T) and ||'u||i2(0,r;B) < °°}! with the norm
f T IIuIIl2(0,T;S) = JI ll«(0llfl*-
In the sequel, we shall use the space
W {0 ,T ) defined as W (0 ,T ) ■= {u : u G
L 2(0,T; H 1 (Ci)),ut G L2(0, T; ( i i 1(f2))/)},
equipped with the norm
ll'u !lx,2 ( 0 , T ; i i 1 ( n ) ) + ll ^ t llz-2 ( 0 ,'T ; ( ir 1 ( « ) ) /) '
D e fin itio n 1. The function u G W (0 ,T ) is
said to be a weak solution of (1.1) if for all
ry G L 2(0, T; ii^ O ) ) satisfying ry(-,T) = 0, the
following identity holds
/ (ut,v){H1{n)y,H1(tt)dt+ ■
Jo
J J \7 u \7 rjdxdt + J J ag(x.t)i](x.t)dsdt
Q ‘ S
= J J {f(t)ip(x.t) + i>(x,t))r](x,t)dxdt,
(1.2)
and u|t=o = uo- ^ Proved in [5] th at there
exists a unique solution in W (0, T ) of the problem (1.1). Furthermore, there is a positive constant Cd > 0 independent of f,ip ,ip ,g and uq
such th at .
II u \\w(o,T) ^ cd(lI f 'P IIl2(Q) + HV-; IIi2(q ) +
; .)l S j l i ^ S ) + || Uo 11Z/2 (i 2)) •
In this paper, we Will consider the inverse problem of determ ining th e tim e-dependent term