Thư viện tri thức trực tuyến
Kho tài liệu với 50,000+ tài liệu học thuật
© 2023 Siêu thị PDF - Kho tài liệu học thuật hàng đầu Việt Nam

Đề ôn tập toán thptqg 9 (669)
Nội dung xem thử
Mô tả chi tiết
Free LATEX
(Đề thi có 10 trang)
BÀI TẬP TOÁN THPT
Thời gian làm bài: 90 phút
Mã đề thi 1
Câu 1. [2] Cho hình hộp chữ nhật ABCD.A
0B
0C
0D
0
có AB = a, AD = b, AA0 = c. Khoảng cách từ điểm A
đến đường thẳng BD0
bằng
A. b
√
a
2 + c
2
√
a
2 + b
2 + c
2
. B.
a
√
b
2 + c
2
√
a
2 + b
2 + c
2
. C. abc √
b
2 + c
2
√
a
2 + b
2 + c
2
. D.
c
√
a
2 + b
2
√
a
2 + b
2 + c
2
.
Câu 2. [3-1229d] Đạo hàm của hàm số y =
log 2x
x
2
là
A. y
0 =
1 − 4 ln 2x
2x
3
ln 10
. B. y
0 =
1 − 2 log 2x
x
3
. C. y
0 =
1
2x
3
ln 10
. D. y
0 =
1 − 2 ln 2x
x
3
ln 10
.
Câu 3. [2] Cho chóp đều S.ABCD có đáy là hình vuông tâm O cạnh a, S A = a. Khoảng cách từ điểm O
đến (S AB) bằng
A. a
√
3. B.
a
√
6
2
. C. a
√
6. D. 2a
√
6.
Câu 4. [3] Cho hình chóp S.ABCD có đáy ABCD là hình thoi tâm O, cạnh là a. Góc BAD [ = 60◦
, S O
vuông góc với mặt đáy và S O = a. Khoảng cách từ A đến (S BC) bằng
A. 2a
√
57
19
. B.
a
√
57
19
. C. a
√
57. D.
a
√
57
17
.
Câu 5. [4-1242d] Trong tất cả các số phức z thỏa mãn |z − 1 + 2i| = |z + 3 − 4i|. Tìm giá trị nhỏ nhất của
môđun z.
A. 5
√
13
13
. B. 2
√
13. C. √
26. D. √
2.
Câu 6. [2] Cho hình lâp phương ABCD.A
0B
0C
0D
0
cạnh a. Khoảng cách từ C đến AC0
bằng
A. a
√
3
2
. B.
a
√
6
3
. C. a
√
6
2
. D.
a
√
6
7
.
Câu 7. [2] Cho hàm số f(x) = ln(x
4 + 1). Giá trị f
0
(1) bằng
A. ln 2
2
. B. 1. C. 2. D.
1
2
.
Câu 8. Khối đa diện loại {4; 3} có tên gọi là gì?
A. Khối bát diện đều. B. Khối 12 mặt đều. C. Khối tứ diện đều. D. Khối lập phương.
Câu 9. [3] Cho hình chóp S.ABCD có đáy ABCD là hình vuông cạnh a, S D =
3a
2
, hình chiếu vuông góc
của S trên mặt phẳng (ABCD) là trung điểm của cạnh AB. Khoảng cách từ A đến mặt phẳng (S BD) bằng
A. a
3
. B.
2a
3
. C. a
√
2
3
. D.
a
4
.
Câu 10. Khối đa diện đều loại {3; 4} có số đỉnh
A. 10. B. 8. C. 6. D. 4.
Câu 11. Phần thực và phần ảo của số phức z =
√
2 − 1 −
√
3i lần lượt l
A. Phần thực là √
2, phần ảo là 1 −
√
3. B. Phần thực là 1 −
√
2, phần ảo là −
√
3.
C. Phần thực là √
2 − 1, phần ảo là −
√
3. D. Phần thực là √
2 − 1, phần ảo là √
3.
Câu 12. [2-c] Gọi M, m lần lượt là giá trị lớn nhất và giá trị nhỏ nhất của hàm số y = x + 2 ln x trên đoạn
[1; e]. Giá trị của T = M + m bằng
A. T = e + 3. B. T = e +
2
e
. C. T = e + 1. D. T = 4 +
2
e
.
Trang 1/10 Mã đề 1