Thư viện tri thức trực tuyến
Kho tài liệu với 50,000+ tài liệu học thuật
© 2023 Siêu thị PDF - Kho tài liệu học thuật hàng đầu Việt Nam

Data Preprocessing in Data Mining
Nội dung xem thử
Mô tả chi tiết
Intelligent Systems Reference Library 72
Salvador García
Julián Luengo
Francisco Herrera
Data
Preprocessing
in Data
Mining
Intelligent Systems Reference Library
Volume 72
Series editors
Janusz Kacprzyk, Polish Academy of Sciences, Warsaw, Poland
e-mail: [email protected]
Lakhmi C. Jain, University of Canberra, Canberra, Australia
e-mail: [email protected]
About this Series
The aim of this series is to publish a Reference Library, including novel advances
and developments in all aspects of Intelligent Systems in an easily accessible and
well structured form. The series includes reference works, handbooks, compendia,
textbooks, well-structured monographs, dictionaries, and encyclopedias. It contains
well integrated knowledge and current information in the field of Intelligent
Systems. The series covers the theory, applications, and design methods of Intelligent Systems. Virtually all disciplines such as engineering, computer science,
avionics, business, e-commerce, environment, healthcare, physics and life science
are included.
More information about this series at http://www.springer.com/series/8578
Salvador García • Julián Luengo
Francisco Herrera
Data Preprocessing
in Data Mining
123
Salvador García
Department of Computer Science
University of Jaén
Jaén
Spain
Julián Luengo
Department of Civil Engineering
University of Burgos
Burgos
Spain
Francisco Herrera
Department of Computer Science
and Artificial Intelligence
University of Granada
Granada
Spain
ISSN 1868-4394 ISSN 1868-4408 (electronic)
ISBN 978-3-319-10246-7 ISBN 978-3-319-10247-4 (eBook)
DOI 10.1007/978-3-319-10247-4
Library of Congress Control Number: 2014946771
Springer Cham Heidelberg New York Dordrecht London
© Springer International Publishing Switzerland 2015
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of
the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations,
recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission or
information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar
methodology now known or hereafter developed. Exempted from this legal reservation are brief
excerpts in connection with reviews or scholarly analysis or material supplied specifically for the
purpose of being entered and executed on a computer system, for exclusive use by the purchaser of the
work. Duplication of this publication or parts thereof is permitted only under the provisions of
the Copyright Law of the Publisher’s location, in its current version, and permission for use must
always be obtained from Springer. Permissions for use may be obtained through RightsLink at the
Copyright Clearance Center. Violations are liable to prosecution under the respective Copyright Law.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this
publication does not imply, even in the absence of a specific statement, that such names are exempt
from the relevant protective laws and regulations and therefore free for general use.
While the advice and information in this book are believed to be true and accurate at the date of
publication, neither the authors nor the editors nor the publisher can accept any legal responsibility for
any errors or omissions that may be made. The publisher makes no warranty, express or implied, with
respect to the material contained herein.
Printed on acid-free paper
Springer is part of Springer Science+Business Media (www.springer.com)
This book is dedicated to all people with
whom we have worked over the years and
have made it possible to reach this moment.
Thanks to the members of the research group
“Soft Computing and Intelligent Information
Systems”
To our families.
Preface
Data preprocessing is an often neglected but major step in the data mining process.
The data collection is usually a process loosely controlled, resulting in out of range
values, e.g., impossible data combinations (e.g., Gender: Male; Pregnant: Yes),
missing values, etc. Analyzing data that has not been carefully screened for such
problems can produce misleading results. Thus, the representation and quality of
data is first and foremost before running an analysis. If there is much irrelevant and
redundant information present or noisy and unreliable data, then knowledge discovery is more difficult to conduct. Data preparation can take considerable amount
of processing time.
Data preprocessing includes data preparation, compounded by integration,
cleaning, normalization and transformation of data; and data reduction tasks; such
as feature selection, instance selection, discretization, etc. The result expected after
a reliable chaining of data preprocessing tasks is a final dataset, which can be
considered correct and useful for further data mining algorithms.
This book covers the set of techniques under the umbrella of data preprocessing,
being a comprehensive book devoted completely to the field of Data Mining,
including all important details and aspects of all techniques that belonging to this
families. In recent years, this area has become of great importance because the data
mining algorithms require meaningful and manageable data to correctly operate and
to provide useful knowledge, predictions or descriptions. It is well known that most
of the efforts made in a knowledge discovery application is dedicated to data
preparation and reduction tasks. Both theoreticians and practitioners are constantly
searching for data preprocessing techniques to ensure reliable and accurate results
together trading off with efficiency and time-complexity. Thus, an exhaustive and
updated background in the topic could be very effective in areas such as data
mining, machine learning, and pattern recognition. This book invites readers to
explore the many advantages the data preparation and reduction provide:
vii
• To adapt and particularize the data for each data mining algorithm.
• To reduce the amount of data required for a suitable learning task, also
decreasing its time-complexity.
• To increase the effectiveness and accuracy in predictive tasks.
• To make possible the impossible with raw data, allowing data mining algorithms
to be applied over high volumes of data.
• To support to the understanding of the data.
• Useful for various tasks, such as classification, regression and unsupervised
learning.
The target audience for this book is anyone who wants a better understanding of
the current state-of-the-art in a crucial part of the knowledge discovery from data:
the data preprocessing. Practitioners in industry and enterprise should find new
insights and possibilities in the breadth of topics covered. Researchers and data
scientist and/or analysts in universities, research centers, and government could find
a comprehensive review in the topic addressed and new ideas for productive
research efforts.
Granada, Spain, June 2014 Salvador García
Julián Luengo
Francisco Herrera
viii Preface
Contents
1 Introduction ........................................ 1
1.1 Data Mining and Knowledge Discovery. . . . . . . . . . . . . . . . . 1
1.2 Data Mining Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.3 Supervised Learning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
1.4 Unsupervised Learning . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
1.4.1 Pattern Mining . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
1.4.2 Outlier Detection . . . . . . . . . . . . . . . . . . . . . . . . . . 8
1.5 Other Learning Paradigms . . . . . . . . . . . . . . . . . . . . . . . . . . 8
1.5.1 Imbalanced Learning . . . . . . . . . . . . . . . . . . . . . . . . 8
1.5.2 Multi-instance Learning . . . . . . . . . . . . . . . . . . . . . . 9
1.5.3 Multi-label Classification . . . . . . . . . . . . . . . . . . . . . 9
1.5.4 Semi-supervised Learning . . . . . . . . . . . . . . . . . . . . 9
1.5.5 Subgroup Discovery . . . . . . . . . . . . . . . . . . . . . . . . 9
1.5.6 Transfer Learning . . . . . . . . . . . . . . . . . . . . . . . . . . 10
1.5.7 Data Stream Learning . . . . . . . . . . . . . . . . . . . . . . . 10
1.6 Introduction to Data Preprocessing . . . . . . . . . . . . . . . . . . . . 10
1.6.1 Data Preparation . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
1.6.2 Data Reduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
References. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
2 Data Sets and Proper Statistical Analysis of Data Mining
Techniques. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
2.1 Data Sets and Partitions. . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
2.1.1 Data Set Partitioning . . . . . . . . . . . . . . . . . . . . . . . . 21
2.1.2 Performance Measures. . . . . . . . . . . . . . . . . . . . . . . 24
2.2 Using Statistical Tests to Compare Methods. . . . . . . . . . . . . . 25
2.2.1 Conditions for the Safe Use of Parametric Tests . . . . . 26
2.2.2 Normality Test over the Group of Data Sets
and Algorithms. . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
ix
2.2.3 Non-parametric Tests for Comparing Two
Algorithms in Multiple Data Set Analysis . . . . . . . . . 29
2.2.4 Non-parametric Tests for Multiple Comparisons
Among More than Two Algorithms . . . . . . . . . . . . . 32
References. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
3 Data Preparation Basic Models . . . . . . . . . . . . . . . . . . . . . . . . . . 39
3.1 Overview. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
3.2 Data Integration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
3.2.1 Finding Redundant Attributes . . . . . . . . . . . . . . . . . . 41
3.2.2 Detecting Tuple Duplication and Inconsistency. . . . . . 43
3.3 Data Cleaning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
3.4 Data Normalization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
3.4.1 Min-Max Normalization . . . . . . . . . . . . . . . . . . . . . 46
3.4.2 Z-score Normalization . . . . . . . . . . . . . . . . . . . . . . . 47
3.4.3 Decimal Scaling Normalization. . . . . . . . . . . . . . . . . 48
3.5 Data Transformation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
3.5.1 Linear Transformations . . . . . . . . . . . . . . . . . . . . . . 49
3.5.2 Quadratic Transformations . . . . . . . . . . . . . . . . . . . . 49
3.5.3 Non-polynomial Approximations
of Transformations . . . . . . . . . . . . . . . . . . . . . . . . . 50
3.5.4 Polynomial Approximations of Transformations . . . . . 51
3.5.5 Rank Transformations . . . . . . . . . . . . . . . . . . . . . . . 52
3.5.6 Box-Cox Transformations . . . . . . . . . . . . . . . . . . . . 53
3.5.7 Spreading the Histogram . . . . . . . . . . . . . . . . . . . . . 54
3.5.8 Nominal to Binary Transformation . . . . . . . . . . . . . . 54
3.5.9 Transformations via Data Reduction . . . . . . . . . . . . . 55
References. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
4 Dealing with Missing Values . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
4.2 Assumptions and Missing Data Mechanisms . . . . . . . . . . . . . 61
4.3 Simple Approaches to Missing Data . . . . . . . . . . . . . . . . . . . 63
4.4 Maximum Likelihood Imputation Methods. . . . . . . . . . . . . . . 64
4.4.1 Expectation-Maximization (EM) . . . . . . . . . . . . . . . . 65
4.4.2 Multiple Imputation . . . . . . . . . . . . . . . . . . . . . . . . 68
4.4.3 Bayesian Principal Component Analysis (BPCA) . . . . 72
4.5 Imputation of Missing Values. Machine Learning
Based Methods. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
4.5.1 Imputation with K-Nearest Neighbor (KNNI) . . . . . . . 76
4.5.2 Weighted Imputation with K-Nearest Neighbour
(WKNNI) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
4.5.3 K-means Clustering Imputation (KMI). . . . . . . . . . . . 78
x Contents
4.5.4 Imputation with Fuzzy K-means Clustering
(FKMI) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
4.5.5 Support Vector Machines Imputation (SVMI). . . . . . . 79
4.5.6 Event Covering (EC). . . . . . . . . . . . . . . . . . . . . . . . 82
4.5.7 Singular Value Decomposition Imputation (SVDI) . . . 86
4.5.8 Local Least Squares Imputation (LLSI) . . . . . . . . . . . 86
4.5.9 Recent Machine Learning Approaches to Missing
Values Imputation. . . . . . . . . . . . . . . . . . . . . . . . . . 90
4.6 Experimental Comparative Analysis . . . . . . . . . . . . . . . . . . . 90
4.6.1 Effect of the Imputation Methods
in the Attributes’ Relationships. . . . . . . . . . . . . . . . . 90
4.6.2 Best Imputation Methods for Classification
Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97
4.6.3 Interesting Comments . . . . . . . . . . . . . . . . . . . . . . . 100
References. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101
5 Dealing with Noisy Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107
5.1 Identifying Noise . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107
5.2 Types of Noise Data: Class Noise and Attribute Noise . . . . . . 110
5.2.1 Noise Introduction Mechanisms . . . . . . . . . . . . . . . . 111
5.2.2 Simulating the Noise of Real-World Data Sets . . . . . . 114
5.3 Noise Filtering at Data Level . . . . . . . . . . . . . . . . . . . . . . . . 115
5.3.1 Ensemble Filter . . . . . . . . . . . . . . . . . . . . . . . . . . . 116
5.3.2 Cross-Validated Committees Filter . . . . . . . . . . . . . . 117
5.3.3 Iterative-Partitioning Filter . . . . . . . . . . . . . . . . . . . . 117
5.3.4 More Filtering Methods . . . . . . . . . . . . . . . . . . . . . . 118
5.4 Robust Learners Against Noise. . . . . . . . . . . . . . . . . . . . . . . 118
5.4.1 Multiple Classifier Systems for Classification
Tasks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120
5.4.2 Addressing Multi-class Classification
Problems by Decomposition. . . . . . . . . . . . . . . . . . . 123
5.5 Empirical Analysis of Noise Filters and Robust Strategies . . . . 125
5.5.1 Noise Introduction . . . . . . . . . . . . . . . . . . . . . . . . . 125
5.5.2 Noise Filters for Class Noise . . . . . . . . . . . . . . . . . . 127
5.5.3 Noise Filtering Efficacy Prediction by Data
Complexity Measures . . . . . . . . . . . . . . . . . . . . . . . 129
5.5.4 Multiple Classifier Systems with Noise . . . . . . . . . . . 133
5.5.5 Analysis of the OVO Decomposition with Noise . . . . 136
References. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140
6 Data Reduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147
6.1 Overview. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147
6.2 The Curse of Dimensionality . . . . . . . . . . . . . . . . . . . . . . . . 148
Contents xi
6.2.1 Principal Components Analysis. . . . . . . . . . . . . . . . . 149
6.2.2 Factor Analysis. . . . . . . . . . . . . . . . . . . . . . . . . . . . 151
6.2.3 Multidimensional Scaling. . . . . . . . . . . . . . . . . . . . . 152
6.2.4 Locally Linear Embedding . . . . . . . . . . . . . . . . . . . . 155
6.3 Data Sampling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 156
6.3.1 Data Condensation . . . . . . . . . . . . . . . . . . . . . . . . . 158
6.3.2 Data Squashing . . . . . . . . . . . . . . . . . . . . . . . . . . . 159
6.3.3 Data Clustering. . . . . . . . . . . . . . . . . . . . . . . . . . . . 159
6.4 Binning and Reduction of Cardinality . . . . . . . . . . . . . . . . . . 161
References. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 162
7 Feature Selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163
7.1 Overview. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163
7.2 Perspectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 164
7.2.1 The Search of a Subset of Features . . . . . . . . . . . . . . 164
7.2.2 Selection Criteria . . . . . . . . . . . . . . . . . . . . . . . . . . 168
7.2.3 Filter, Wrapper and Embedded Feature Selection . . . . 173
7.3 Aspects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 176
7.3.1 Output of Feature Selection . . . . . . . . . . . . . . . . . . . 176
7.3.2 Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 177
7.3.3 Drawbacks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 179
7.3.4 Using Decision Trees for Feature Selection . . . . . . . . 179
7.4 Description of the Most Representative Feature Selection
Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 180
7.4.1 Exhaustive Methods . . . . . . . . . . . . . . . . . . . . . . . . 181
7.4.2 Heuristic Methods. . . . . . . . . . . . . . . . . . . . . . . . . . 182
7.4.3 Nondeterministic Methods . . . . . . . . . . . . . . . . . . . . 182
7.4.4 Feature Weighting Methods . . . . . . . . . . . . . . . . . . . 184
7.5 Related and Advanced Topics . . . . . . . . . . . . . . . . . . . . . . . 185
7.5.1 Leading and Recent Feature Selection Techniques. . . . 186
7.5.2 Feature Extraction. . . . . . . . . . . . . . . . . . . . . . . . . . 188
7.5.3 Feature Construction . . . . . . . . . . . . . . . . . . . . . . . . 189
7.6 Experimental Comparative Analyses in Feature Selection. . . . . 190
References. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 191
8 Instance Selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 195
8.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 195
8.2 Training Set Selection Versus Prototype Selection. . . . . . . . . . 197
8.3 Prototype Selection Taxonomy . . . . . . . . . . . . . . . . . . . . . . . 199
8.3.1 Common Properties in Prototype Selection
Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 199
8.3.2 Prototype Selection Methods . . . . . . . . . . . . . . . . . . 202
8.3.3 Taxonomy of Prototype Selection Methods . . . . . . . . 202
xii Contents
8.4 Description of Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . 206
8.4.1 Condensation Algorithms. . . . . . . . . . . . . . . . . . . . . 206
8.4.2 Edition Algorithms . . . . . . . . . . . . . . . . . . . . . . . . . 210
8.4.3 Hybrid Algorithms . . . . . . . . . . . . . . . . . . . . . . . . . 212
8.5 Related and Advanced Topics . . . . . . . . . . . . . . . . . . . . . . . 221
8.5.1 Prototype Generation. . . . . . . . . . . . . . . . . . . . . . . . 221
8.5.2 Distance Metrics, Feature Weighting
and Combinations with Feature Selection. . . . . . . . . . 221
8.5.3 Hybridizations with Other Learning Methods
and Ensembles . . . . . . . . . . . . . . . . . . . . . . . . . . . . 222
8.5.4 Scaling-Up Approaches . . . . . . . . . . . . . . . . . . . . . . 223
8.5.5 Data Complexity. . . . . . . . . . . . . . . . . . . . . . . . . . . 223
8.6 Experimental Comparative Analysis in Prototype Selection . . . 224
8.6.1 Analysis and Empirical Results on Small
Size Data Sets . . . . . . . . . . . . . . . . . . . . . . . . . . . . 225
8.6.2 Analysis and Empirical Results on Medium
Size Data Sets . . . . . . . . . . . . . . . . . . . . . . . . . . . . 230
8.6.3 Global View of the Obtained Results . . . . . . . . . . . . 231
8.6.4 Visualization of Data Subsets: A Case Study
Based on the Banana Data Set . . . . . . . . . . . . . . . . . 233
References. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 236
9 Discretization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 245
9.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 245
9.2 Perspectives and Background . . . . . . . . . . . . . . . . . . . . . . . . 247
9.2.1 Discretization Process . . . . . . . . . . . . . . . . . . . . . . . 247
9.2.2 Related and Advanced Work . . . . . . . . . . . . . . . . . . 250
9.3 Properties and Taxonomy. . . . . . . . . . . . . . . . . . . . . . . . . . . 251
9.3.1 Common Properties. . . . . . . . . . . . . . . . . . . . . . . . . 251
9.3.2 Methods and Taxonomy . . . . . . . . . . . . . . . . . . . . . 255
9.3.3 Description of the Most Representative
Discretization Methods . . . . . . . . . . . . . . . . . . . . . . 259
9.4 Experimental Comparative Analysis . . . . . . . . . . . . . . . . . . . 265
9.4.1 Experimental Set up . . . . . . . . . . . . . . . . . . . . . . . . 265
9.4.2 Analysis and Empirical Results. . . . . . . . . . . . . . . . . 268
References. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 278
10 A Data Mining Software Package Including Data Preparation
and Reduction: KEEL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 285
10.1 Data Mining Softwares and Toolboxes . . . . . . . . . . . . . . . . . 285
10.2 KEEL: Knowledge Extraction Based on Evolutionary
Learning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 287
10.2.1 Main Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . 288
10.2.2 Data Management . . . . . . . . . . . . . . . . . . . . . . . . . . 289
Contents xiii
10.2.3 Design of Experiments: Off-Line Module . . . . . . . . . 291
10.2.4 Computer-Based Education: On-Line Module. . . . . . . 293
10.3 KEEL-Dataset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 294
10.3.1 Data Sets Web Pages . . . . . . . . . . . . . . . . . . . . . . . 294
10.3.2 Experimental Study Web Pages . . . . . . . . . . . . . . . . 297
10.4 Integration of New Algorithms into the KEEL Tool . . . . . . . . 298
10.4.1 Introduction to the KEEL Codification Features . . . . . 298
10.5 KEEL Statistical Tests. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 303
10.5.1 Case Study. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 304
10.6 Summarizing Comments . . . . . . . . . . . . . . . . . . . . . . . . . . . 310
References. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 311
Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 315
xiv Contents
Acronyms
ANN Artificial Neural Network
CV Cross Validation
DM Data Mining
DR Dimensionality Reduction
EM Expectation-Maximization
FCV Fold Cross Validation
FS Feature Selection
IS Instance Selection
KDD Knowledge Discovery in Data
KEEL Knowledge Extraction based on Evolutionary Learning
KNN K-Nearest Neighbors
LLE Locally Linear Embedding
LVQ Learning Vector Quantization
MDS Multi Dimensional Scaling
MI Mutual Information
ML Machine Learning
MLP Multi-Layer Perceptron
MV Missing Value
PCA Principal Components Analysis
RBFN Radial Basis Function Network
SONN Self Organizing Neural Network
SVM Support Vector Machine
xv