Thư viện tri thức trực tuyến
Kho tài liệu với 50,000+ tài liệu học thuật
© 2023 Siêu thị PDF - Kho tài liệu học thuật hàng đầu Việt Nam

Tài liệu đang bị lỗi
File tài liệu này hiện đang bị hỏng, chúng tôi đang cố gắng khắc phục.
Công thức xác suất thống kê
Nội dung xem thử
Mô tả chi tiết
PHẦN I: XAÙC SUAÁT
1. Bieán coá ngaãu nhieân & xaùc suaát cuûa bieán coá:
1.1. Coâng thöùc coäng xaùc suaát:
1.1.1. p(A+B)=p(A)+p(B) (2 bieán coá xung khaéc)
1.1.2. p(A+B)=p(A)+p(B)-p(A.B) p(A+B+C)=p(A)+p(B)+p(C)-[p(AB)+p(AC)+p(BC)]
+p(ABC)
1.2. Coâng thöùc nhaân xaùc suaát:
1.2.1. p(A.B)=p(A).p(B) (2 bieán coá ñoäc laäp)
1.2.2. p(A.B)=p(A).p(B/A) 1 2 1 2 1 1 2 1 ( ... ) ( ). ( / )... ( / .. )
n n n
p A A A p A p A A p A A A A = −
1.3. Coâng thöùc Bernoulli: cho 2 bieán coá A vaø A
1.3.1. ( ) x x n x
n n
p x C p q −
= , p=p(A), q=1-p
1.4. Coâng thöùc xaùc suaát ñaày ñuû: 1 1 2 2 ( ) ( ). ( / ) ( ). ( / ) ... ( ). ( / )
n n
p F p A p F A p A p F A p A p F A = + + +
1.5. Coâng thöùc Bayes:
( . ) ( ). ( / ) ( / )
( ) ( )
i i i
i
p A F p A p F A p A F
p F p F
= =
2. Bieán ngaãu nhieân:
2.1. Baûng phaân phoái xaùc suaát (bieán ngaãu nhieân rôøi raïc)
2.2. Haøm maät ñoä xaùc suaát ( f x( ) ) (bieãn ngaãu nhieân lieân tuïc)
2.2.1. f x( ) ≥ 0
2.2.2. f x dx ( ) 1
+∞
−∞
= ∫
2.2.3. ( ) ( )
b
a
p a x b f x dx ≤ ≤ = ∫
2.3. Haøm phaân phoái xaùc suaát ( F x( )) (duøng cho caû 2 loaïi bieán-thöôøng laø bieán ngaãu nhieân lieân
tuïc)
2.3.1. F x( ) =p( F <x)
2.3.2. F x f x '( ) ( ) =
2.3.3. ( ) ( )
x
F x f t dt
−∞
= ∫
2.4. Kyø voïng
2.4.1. 1 1 2 2 ( ) ... E x x p x p x p = + + + n n (töø baûng phaân phoái xaùc suaát)
2.4.2. E x xf x dx ( ) ( )
+∞
−∞
= ∫
2.5. Phöông sai:
2.5.1. 2 2 V x E x E x ( ) ( ) [ ( )] = −
2.5.2. 2 2 V x x f x dx xf x dx ( ) ( ) [ ( ) ]
+∞ +∞
−∞ −∞
= − ∫ ∫
3. Moät soá phaân phoái xaùc suaát thoâng duïng: