Thư viện tri thức trực tuyến
Kho tài liệu với 50,000+ tài liệu học thuật
© 2023 Siêu thị PDF - Kho tài liệu học thuật hàng đầu Việt Nam

Computational structural analysis and finite element methods
Nội dung xem thử
Mô tả chi tiết
Computational
Structural Analysis
and Finite Element
Methods
A. Kaveh
Computational Structural Analysis
and Finite Element Methods
.
A. Kaveh
Computational Structural
Analysis and Finite Element
Methods
A. Kaveh
Centre of Excellence for Fundamental Studies in
Structural Engineering
School of Civil Engineering
Iran University of Science and Technology
Tehran
Iran
ISBN 978-3-319-02963-4 ISBN 978-3-319-02964-1 (eBook)
DOI 10.1007/978-3-319-02964-1
Springer Cham Heidelberg New York Dordrecht London
Library of Congress Control Number: 2013956541
© Springer International Publishing Switzerland 2014
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part
of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations,
recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission or
information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar
methodology now known or hereafter developed. Exempted from this legal reservation are brief excerpts
in connection with reviews or scholarly analysis or material supplied specifically for the purpose of being
entered and executed on a computer system, for exclusive use by the purchaser of the work. Duplication
of this publication or parts thereof is permitted only under the provisions of the Copyright Law of the
Publisher’s location, in its current version, and permission for use must always be obtained from
Springer. Permissions for use may be obtained through RightsLink at the Copyright Clearance Center.
Violations are liable to prosecution under the respective Copyright Law.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this
publication does not imply, even in the absence of a specific statement, that such names are exempt
from the relevant protective laws and regulations and therefore free for general use.
While the advice and information in this book are believed to be true and accurate at the date of
publication, neither the authors nor the editors nor the publisher can accept any legal responsibility for
any errors or omissions that may be made. The publisher makes no warranty, express or implied, with
respect to the material contained herein.
Printed on acid-free paper
Springer is part of Springer Science+Business Media (www.springer.com)
Preface
Recent advances in structural technology require greater accuracy, efficiency and
speed in the analysis of structural systems. It is therefore not surprising that new
methods have been developed for the analysis of structures with complex configurations and large number of elements.
The requirement of accuracy in analysis has been brought about by the need for
demonstrating structural safety. Consequently, accurate methods of analysis had to
be developed, since conventional methods, although perfectly satisfactory when
used on simple structures, have been found inadequate when applied to complex
and large-scale structures. Another reason why higher speed is required results from
the need to have optimal design, where analysis is repeated hundred or even
thousands of times.
This book can be considered as an application of discrete mathematics rather
than the more usual calculus-based methods of analysis of structures and finite
element methods. The subject of graph theory has become important in science and
engineering through its strong links with matrix algebra and computer science.
At first glance, it seems extraordinary that such abstract material should have quite
practical applications. However, as the author makes clear, the early relationship
between graph theory and skeletal structures and finite element models is now
obvious: the structure of the mathematics is well suited to the structure of the
physical problem. In fact, could there be any other way of dealing with this
structural problem? The engineer studying these applications of structural analysis
has either to apply the computer programs as a black box, or to become involved in
graph theory, matrix algebra and sparse matrix technology. This book is addressed
to those scientists and engineers, and their students, who wish to understand the
theory.
The methods of analysis in this book employ matrix algebra and graph theory,
which are ideally suited for modern computational mechanics. Although this text
deals primarily with analysis of structural engineering systems, it should be
recognised that these methods are also applicable to other types of systems such
as hydraulic and electrical networks.
v
The author has been involved in various developments and applications of graph
theory in the last four decades. The present book contains part of this research
suitable for various aspects of matrix structural analysis and finite element methods,
with particular attention to the finite element force method.
In Chap. 1, the most important concepts and theorems of structures and theory of
graphs are briefly presented. Chapter 2 contains different efficient approaches for
determining the degree of static indeterminacy of structures and provides systematic
methods for studying the connectivity properties of structural models. In this chapter,
force method of analysis for skeletal structures is described mostly based on the
author’s algorithms. Chapter 3 provides simple and efficient methods for construction
of stiffness matrices. These methods are especially suitable for the formation of wellconditioned stiffness matrices. In Chaps. 4 and 5, banded, variable banded and frontal
methods are investigated. Efficient methods are presented for both node and element
ordering. Many new graphs are introduced for transforming the connectivity properties of finite element models onto graph models. Chapters 6 and 7 include powerful
graph theory and algebraic graph theory methods for the force method of finite
element meshes of low order and high order, respectively. These new methods use
different graphs of the models and algebraic approaches. In Chap. 8, several
partitioning algorithms are developed for solution of multi-member systems, which
can be categorized as graph theory methods and algebraic graph theory approaches.
In Chap. 9, an efficient method is presented for the analysis of near-regular structures
which are obtained by addition or removal of some members to regular structural
models. In Chap. 10, energy formulation based on the force method is derived and a
new optimization algorithm called SCSS is applied to the analysis procedure. Then,
using the SCSS and prescribed stress ratios, structures are analyzed and designed. In
all the chapters, many examples are included to make the text easier to be understood.
I would like to take this opportunity to acknowledge a deep sense of gratitude to
a number of colleagues and friends who in different ways have helped in the
preparation of this book. Mr. J. C. de C. Henderson, formerly of Imperial College
of Science and Technology, first introduced me to the subject with most stimulating
discussions on various aspects of topology and combinatorial mathematics. Professor F. Ziegler and Prof. Ch. Bucher encouraged and supported me to write this
book. My special thanks are due to Mrs. Silvia Schilgerius, the senior editor of the
Applied Sciences of Springer, for her constructive comments, editing and unfailing
kindness in the course of the preparation of this book. My sincere appreciation is
extended to our Springer colleagues Ms. Beate Siek and Ms. G. Ramya Prakash.
I would like to thank my former Ph.D. and M.Sc. students, Dr. H. Rahami,
Dr. M. S. Massoudi, Dr. K. Koohestani, Dr. P. Sharafi, Mr. M. J. Tolou Kian,
Dr. A. Mokhtar-zadeh, Mr. G. R. Roosta, Ms. E. Ebrahimi, Mr. M. Ardalan, and
Mr. B. Ahmadi for using our joint papers and for their help in various stages of
writing this book. I would like to thank the publishers who permitted some of our
papers to be utilized in the preparation of this book, consisting of Springer-Verlag,
John Wiley and Sons, and Elsevier.
My warmest gratitude is due to my family and in particular my wife, Mrs.
Leopoldine Kaveh, for her continued support in the course of preparing this book.
vi Preface
Every effort has been made to render the book error free. However, the author
would appreciate any remaining errors being brought to his attention through his
email-address: [email protected].
Tehran A. Kaveh
December 2013
Preface vii
.
Contents
1 Basic Definitions and Concepts of Structural Mechanics and Theory
of Graphs ............................................ 1
1.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.1.1 Definitions . . ................................. 1
1.1.2 Structural Analysis and Design . . . . . . . . . . . . . . . . . . . . 4
1.2 General Concepts of Structural Analysis ................... 5
1.2.1 Main Steps of Structural Analysis .................. 5
1.2.2 Member Forces and Displacements . ................ 6
1.2.3 Member Flexibility and Stiffness Matrices ............ 7
1.3 Important Structural Theorems . . . . . . . . . . . . . . . . . . . . . . . . . . 11
1.3.1 Work and Energy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
1.3.2 Castigliano’s Theorems . . . . . . . . . . . . . . . . . . . . . . . . . . 13
1.3.3 Principle of Virtual Work . . . . . . . . . . . . . . . . . . . . . . . . 13
1.3.4 Contragradient Principle . . . . . . . . . . . . . . . . . . . . . . . . . 16
1.3.5 Reciprocal Work Theorem . . . . . . . . . . . . . . . . . . . . . . . . 17
1.4 Basic Concepts and Definitions of Graph Theory . . . . . . . . . . . . . 18
1.4.1 Basic Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
1.4.2 Definition of a Graph . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
1.4.3 Adjacency and Incidence . . . . . . . . . . . . . . . . . . . . . . . . . 20
1.4.4 Graph Operations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
1.4.5 Walks, Trails and Paths . . . . . . . . . . . . . . . . . . . . . . . . . . 21
1.4.6 Cycles and Cutsets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
1.4.7 Trees, Spanning Trees and Shortest Route Trees . . . . . . . . 23
1.4.8 Different Types of Graphs . . . . . . . . . . . . . . . . . . . . . . . . 23
1.5 Vector Spaces Associated with a Graph . . . . . . . . . . . . . . . . . . . . 25
1.5.1 Cycle Space . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
1.5.2 Cutset Space . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
1.5.3 Orthogonality Property . . . . . . . . . . . . . . . . . . . . . . . . . . 26
1.5.4 Fundamental Cycle Bases . . . . . . . . . . . . . . . . . . . . . . . . 27
1.5.5 Fundamental Cutset Bases . . . . . . . . . . . . . . . . . . . . . . . . 27
ix
1.6 Matrices Associated with a Graph . . . . . . . . . . . . . . . . . . . . . . . . 28
1.6.1 Matrix Representation of a Graph . . . . . . . . . . . . . . . . . . 29
1.6.2 Cycle Bases Matrices . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
1.6.3 Special Patterns for Fundamental Cycle Bases . . . . . . . . . 33
1.6.4 Cutset Bases Matrices . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
1.6.5 Special Patterns for Fundamental Cutset Bases . . . . . . . . . 34
1.7 Directed Graphs and Their Matrices . . . . . . . . . . . . . . . . . . . . . . 35
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
2 Optimal Force Method: Analysis of Skeletal Structures . . . . . . . . . 39
2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
2.2 Static Indeterminacy of Structures . . . . . . . . . . . . . . . . . . . . . . . . 40
2.2.1 Mathematical Model of a Skeletal Structure . . . . . . . . . . . 41
2.2.2 Expansion Process for Determining the Degree
of Static Indeterminacy . . . . . . . . . . . . . . . . . . . . . . . . . . 42
2.3 Formulation of the Force Method . . . . . . . . . . . . . . . . . . . . . . . . 46
2.3.1 Equilibrium Equations . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
2.3.2 Member Flexibility Matrices . . . . . . . . . . . . . . . . . . . . . . 49
2.3.3 Explicit Method for Imposing Compatibility . . . . . . . . . . . 52
2.3.4 Implicit Approach for Imposing Compatibility . . . . . . . . . 53
2.3.5 Structural Flexibility Matrices . . . . . . . . . . . . . . . . . . . . . 55
2.3.6 Computational Procedure . . . . . . . . . . . . . . . . . . . . . . . . . 55
2.3.7 Optimal Force Method . . . . . . . . . . . . . . . . . . . . . . . . . . 60
2.4 Force Method for the Analysis of Frame Structures . . . . . . . . . . . 60
2.4.1 Minimal and Optimal Cycle Bases . . . . . . . . . . . . . . . . . . 61
2.4.2 Selection of Minimal and Subminimal Cycle Bases . . . . . . 62
2.4.3 Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
2.4.4 Optimal and Suboptimal Cycle Bases . . . . . . . . . . . . . . . . 69
2.4.5 Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
2.4.6 An Improved Turn Back Method for the Formation
of Cycle Bases . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
2.4.7 Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
2.4.8 Formation of B0 and B1 Matrices . . . . . . . . . . . . . . . . . . . 78
2.5 Generalized Cycle Bases of a Graph . . . . . . . . . . . . . . . . . . . . . . 82
2.5.1 Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
2.5.2 Minimal and Optimal Generalized Cycle Bases . . . . . . . . . 85
2.6 Force Method for the Analysis of Pin-Jointed Planar Trusses . . . . 86
2.6.1 Associate Graphs for Selection of a Suboptimal GCB . . . . 86
2.6.2 Minimal GCB of a Graph . . . . . . . . . . . . . . . . . . . . . . . . 89
2.6.3 Selection of a Subminimal GCB: Practical Methods . . . . . 89
2.7 Algebraic Force Methods of Analysis . . . . . . . . . . . . . . . . . . . . . 91
2.7.1 Algebraic Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98
x Contents
3 Optimal Displacement Method of Structural Analysis . . . . . . . . . . 101
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101
3.2 Formulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101
3.2.1 Coordinate Systems Transformation . . . . . . . . . . . . . . . . . 102
3.2.2 Element Stiffness Matrix Using Unit
Displacement Method . . . . . . . . . . . . . . . . . . . . . . . . . . . 105
3.2.3 Element Stiffness Matrix Using Castigliano’s Theorem . . . 109
3.2.4 The Stiffness Matrix of a Structure . . . . . . . . . . . . . . . . . . 111
3.2.5 Stiffness Matrix of a Structure;
an Algorithmic Approach . . . . . . . . . . . . . . . . . . . . . . . . 116
3.3 Transformation of Stiffness Matrices . . . . . . . . . . . . . . . . . . . . . . 118
3.3.1 Stiffness Matrix of a Bar Element . . . . . . . . . . . . . . . . . . 118
3.3.2 Stiffness Matrix of a Beam Element . . . . . . . . . . . . . . . . . 120
3.4 Displacement Method of Analysis . . . . . . . . . . . . . . . . . . . . . . . . 122
3.4.1 Boundary Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124
3.4.2 General Loading . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125
3.5 Stiffness Matrix of a Finite Element . . . . . . . . . . . . . . . . . . . . . . 128
3.5.1 Stiffness Matrix of a Triangular Element . . . . . . . . . . . . . 129
3.6 Computational Aspects of the Matrix Displacement Method . . . . . 132
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135
4 Ordering for Optimal Patterns of Structural Matrices: Graph
Theory Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137
4.2 Bandwidth Optimisation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138
4.3 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140
4.4 A Shortest Route Tree and Its Properties . . . . . . . . . . . . . . . . . 142
4.5 Nodal Ordering for Bandwidth Reduction . . . . . . . . . . . . . . . . 142
4.5.1 A Good Starting Node . . . . . . . . . . . . . . . . . . . . . . . . 143
4.5.2 Primary Nodal Decomposition . . . . . . . . . . . . . . . . . . 145
4.5.3 Transversal P of an SRT . . . . . . . . . . . . . . . . . . . . . . 146
4.5.4 Nodal Ordering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146
4.5.5 Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147
4.6 Finite Element Nodal Ordering for Bandwidth Optimisation . . . 147
4.6.1 Element Clique Graph Method (ECGM) . . . . . . . . . . 149
4.6.2 Skeleton Graph Method (SkGM) . . . . . . . . . . . . . . . . 149
4.6.3 Element Star Graph Method (EStGM) . . . . . . . . . . . . 150
4.6.4 Element Wheel Graph Method (EWGM) . . . . . . . . . . 151
4.6.5 Partially Triangulated Graph Method (PTGM) . . . . . . 152
4.6.6 Triangulated Graph Method (TGM) . . . . . . . . . . . . . 153
4.6.7 Natural Associate Graph Method (NAGM) . . . . . . . . 153
4.6.8 Incidence Graph Method (IGM) . . . . . . . . . . . . . . . . 155
4.6.9 Representative Graph Method (RGM) . . . . . . . . . . . . 156
4.6.10 Computational Results . . . . . . . . . . . . . . . . . . . . . . . 157
4.6.11 Discussions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 158
Contents xi
4.7 Finite Element Nodal Ordering for Profile Optimisation . . . . . . 160
4.7.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 160
4.7.2 Graph Nodal Numbering for Profile Reduction . . . . . 162
4.7.3 Nodal Ordering with Element
Clique Graph (NOECG) . . . . . . . . . . . . . . . . . . . . . . 164
4.7.4 Nodal Ordering with Skeleton Graph (NOSG) . . . . . . 165
4.7.5 Nodal Ordering with Element Star Graph (NOESG) . . . 166
4.7.6 Nodal Ordering with Element Wheel Graph
(NOEWG) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 166
4.7.7 Nodal Ordering with Partially Triangulated Graph
(NOPTG) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 167
4.7.8 Nodal Ordering with Triangulated Graph (NOTG) . . . 167
4.7.9 Nodal Ordering with Natural Associate Graph
(NONAG) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 168
4.7.10 Nodal Ordering with Incidence Graph (NOIG) . . . . . 168
4.7.11 Nodal Ordering with Representative Graph (NORG) . . . 168
4.7.12 Nodal Ordering with Element Clique Representative
Graph (NOECRG) . . . . . . . . . . . . . . . . . . . . . . . . . . 170
4.7.13 Computational Results . . . . . . . . . . . . . . . . . . . . . . . 170
4.7.14 Discussions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 170
4.8 Element Ordering for Frontwidth Reduction . . . . . . . . . . . . . . . 171
4.9 Element Ordering for Bandwidth Optimisation of Flexibility
Matrices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 174
4.9.1 An Associate Graph . . . . . . . . . . . . . . . . . . . . . . . . . . 174
4.9.2 Distance Number of an Element . . . . . . . . . . . . . . . . . 175
4.9.3 Element Ordering Algorithms . . . . . . . . . . . . . . . . . . . 175
4.10 Bandwidth Reduction for Rectangular Matrices . . . . . . . . . . . . 177
4.10.1 Definitions . . . .................................. 177
4.10.2 Algorithms .................................... 178
4.10.3 Examples ..................................... 179
4.10.4 Bandwidth Reduction of Finite Element Models . . . . . . . . . 181
4.11 Graph-Theoretical Interpretation of Gaussian Elimination . . . . . 182
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 185
5 Ordering for Optimal Patterns of Structural Matrices:
Algebraic Graph Theory and Meta-heuristic Based Methods . . . . . 187
5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 187
5.2 Adjacency Matrix of a Graph for Nodal Ordering . . . . . . . . . . . . 187
5.2.1 Basic Concepts and Definitions . . . . . . . . . . . . . . . . . . . . 187
5.2.2 A Good Starting Node . . . . . . . . . . . . . . . . . . . . . . . . . . . 190
5.2.3 Primary Nodal Decomposition . . . . . . . . . . . . . . . . . . . . . 190
5.2.4 Transversal P of an SRT . . . . . . . . . . . . . . . . . . . . . . . . . 191
5.2.5 Nodal Ordering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 191
5.2.6 Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 192
xii Contents
5.3 Laplacian Matrix of a Graph for Nodal Ordering . . . . . . . . . . . . . 192
5.3.1 Basic Concepts and Definitions . . . . . . . . . . . . . . . . . . . . 192
5.3.2 Nodal Numbering Algorithm . . . . . . . . . . . . . . . . . . . . . . 196
5.3.3 Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 196
5.4 A Hybrid Method for Ordering . . . . . . . . . . . . . . . . . . . . . . . . . . 196
5.4.1 Development of the Method . . . . . . . . . . . . . . . . . . . . . . . 197
5.4.2 Numerical Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 198
5.4.3 Discussions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 199
5.5 Ordering via Charged System Search Algorithm . . . . . . . . . . . . . 203
5.5.1 Charged System Search . . . . . . . . . . . . . . . . . . . . . . . . . . 203
5.5.2 The CSS Algorithm for Nodal Ordering . . . . . . . . . . . . . . 208
5.5.3 Numerical Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . 211
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 213
6 Optimal Force Method for FEMs: Low Order Elements . . . . . . . . 215
6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 215
6.2 Force Method for Finite Element Models: Rectangular and
Triangular Plane Stress and Plane Strain Elements . . . . . . . . . . . . 215
6.2.1 Member Flexibility Matrices . . . . . . . . . . . . . . . . . . . . . . 216
6.2.2 Graphs Associated with FEMs . . . . . . . . . . . . . . . . . . . . . 220
6.2.3 Pattern Corresponding to the Self Stress Systems . . . . . . . 221
6.2.4 Selection of Optimal γ-Cycles Corresponding
to Type II Self Stress Systems . . . . . . . . . . . . . . . . . . . . . 224
6.2.5 Selection of Optimal Lists . . . . . . . . . . . . . . . . . . . . . . . . 225
6.2.6 Numerical Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . 227
6.3 Finite Element Analysis Force Method: Triangular and Rectangular
Plate Bending Elements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 230
6.3.1 Graphs Associated with Finite Element Models . . . . . . . . 233
6.3.2 Subgraphs Corresponding to Self-Equilibrating Systems . . . 233
6.3.3 Numerical Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . 240
6.4 Force Method for Three Dimensional Finite Element Analysis . . . 244
6.4.1 Graphs Associated with Finite Element Model . . . . . . . . . 244
6.4.2 The Pattern Corresponding to the Self Stress Systems . . . . 245
6.4.3 Relationship Between γ(S) and b1(A(S)) . . . . . . . . . . . . . 248
6.4.4 Selection of Optimal γ-Cycles Corresponding
to Type II Self Stress Systems . . . . . . . . . . . . . . . . . . . . . 251
6.4.5 Selection of Optimal Lists . . . . . . . . . . . . . . . . . . . . . . . . 252
6.4.6 Numerical Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . 254
6.5 Efficient Finite Element Analysis Using Graph-Theoretical Force
Method: Brick Element . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 257
6.5.1 Definition of the Independent Element Forces . . . . . . . . . . 258
6.5.2 Flexibility Matrix of an Element . . . . . . . . . . . . . . . . . . . 259
6.5.3 Graphs Associated with Finite Element Model . . . . . . . . . 261
6.5.4 Topological Interpretation of Static Indeterminacy . . . . . . 263
Contents xiii
6.5.5 Models Including Internal Node . . . . . . . . . . . . . . . . . . . . 270
6.5.6 Selection of an Optimal List Corresponding to Minimal
Self-Equilibrating Stress Systems . . . . . . . . . . . . . . . . . . . 271
6.5.7 Numerical Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . 272
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 279
7 Optimal Force Method for FEMS: Higher Order Elements . . . . . . 281
7.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 281
7.2 Finite Element Analysis of Models Comprised of Higher Order
Triangular Elements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 281
7.2.1 Definition of the Element Force System . . . . . . . . . . . . . . 282
7.2.2 Flexibility Matrix of the Element . . . . . . . . . . . . . . . . . . . 282
7.2.3 Graphs Associated with Finite Element Model . . . . . . . . . 282
7.2.4 Topological Interpretation of Static Indeterminacies . . . . . 284
7.2.5 Models Including Opening . . . . . . . . . . . . . . . . . . . . . . . . 287
7.2.6 Selection of an Optimal List Corresponding to Minimal
Self-Equilibrating Stress Systems . . . . . . . . . . . . . . . . . . . 290
7.2.7 Numerical Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . 291
7.3 Finite Element Analysis of Models Comprised of Higher Order
Rectangular Elements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 297
7.3.1 Definition of Element Force System . . . . . . . . . . . . . . . . . 298
7.3.2 Flexibility Matrix of the Element . . . . . . . . . . . . . . . . . . . 300
7.3.3 Graphs Associated with Finite Element Model . . . . . . . . . 301
7.3.4 Topological Interpretation of Static Indeterminacies . . . . . 303
7.3.5 Selection of Generators for SESs of Type II and Type III . . . 307
7.3.6 Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 308
7.3.7 Numerical Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . 309
7.4 Efficient Finite Element Analysis Using Graph-Theoretical
Force Method: Hexa-Hedron Elements . . . . . . . . . . . . . . . . . . . . 316
7.4.1 Independent Element Forces and Flexibility Matrix
of Hexahedron Elements . . . . . . . . . . . . . . . . . . . . . . . . . 317
7.4.2 Graphs Associated with Finite Element Models . . . . . . . . 321
7.4.3 Negative Incidence Number . . . . . . . . . . . . . . . . . . . . . . . 325
7.4.4 Pattern Corresponding to Self-Equilibrating Systems . . . . . 325
7.4.5 Selection of Generators for SESs of Type II and
Type III . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 331
7.4.6 Numerical Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . 334
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 338
8 Decomposition for Parallel Computing: Graph Theory Methods. . . . 341
8.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 341
8.2 Earlier Works on Partitioning . . . . . . . . . . . . . . . . . . . . . . . . . . . 342
8.2.1 Nested Dissection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 342
8.2.2 A Modified Level-Tree Separator Algorithm . . . . . . . . . . . 342
8.3 Substructuring for Parallel Analysis of Skeletal Structures . . . . . . 343
8.3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 343
8.3.2 Substructuring Displacement Method . . . . . . . . . . . . . . . . 344
xiv Contents