Thư viện tri thức trực tuyến
Kho tài liệu với 50,000+ tài liệu học thuật
© 2023 Siêu thị PDF - Kho tài liệu học thuật hàng đầu Việt Nam

Classical Fourier Analysis
Nội dung xem thử
Mô tả chi tiết
Graduate Texts in Mathematics
Classical
Fourier
Analysis
Loukas Grafakos
Third Edition
Graduate Texts in Mathematics 249
Graduate Texts in Mathematics
Series Editors:
Sheldon Axler
San Francisco State University, San Francisco, CA, USA
Kenneth Ribet
University of California, Berkeley, CA, USA
Advisory Board:
Colin Adams, Williams College, Williamstown, MA, USA
Alejandro Adem, University of British Columbia, Vancouver, BC, Canada
Ruth Charney, Brandeis University, Waltham, MA, USA
Irene M. Gamba, The University of Texas at Austin, Austin, TX, USA
Roger E. Howe, Yale University, New Haven, CT, USA
David Jerison, Massachusetts Institute of Technology, Cambridge, MA, USA
Jeffrey C. Lagarias, University of Michigan, Ann Arbor, MI, USA
Jill Pipher, Brown University, Providence, RI, USA
Fadil Santosa, University of Minnesota, Minneapolis, MN, USA
Amie Wilkinson, University of Chicago, Chicago, IL, USA
Graduate Texts in Mathematics bridge the gap between passive study and creative
understanding, offering graduate-level introductions to advanced topics in mathematics. The volumes are carefully written as teaching aids and highlight characteristic features of the theory. Although these books are frequently used as textbooks
in graduate courses, they are also suitable for individual study.
For further volumes:
http://www.springer.com/series/136
Loukas Grafakos
Classical Fourier Analysis
Third Edition
123
Loukas Grafakos
Department of Mathematics
University of Missouri
Columbia, MO, USA
ISSN 0072-5285 ISSN 2197-5612 (electronic)
ISBN 978-1-4939-1193-6 ISBN 978-1-4939-1194-3 (eBook)
DOI 10.1007/978-1-4939-1194-3
Springer New York Heidelberg Dordrecht London
Library of Congress Control Number: 2014946585
Mathematics Subject Classification (2010): 42Axx, 42Bxx
© Springer Science+Business Media New York 2000, 2008, 2014
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of
the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology
now known or hereafter developed. Exempted from this legal reservation are brief excerpts in connection
with reviews or scholarly analysis or material supplied specifically for the purpose of being entered
and executed on a computer system, for exclusive use by the purchaser of the work. Duplication of
this publication or parts thereof is permitted only under the provisions of the Copyright Law of the
Publisher’s location, in its current version, and permission for use must always be obtained from Springer.
Permissions for use may be obtained through RightsLink at the Copyright Clearance Center. Violations
are liable to prosecution under the respective Copyright Law.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
While the advice and information in this book are believed to be true and accurate at the date of publication, neither the authors nor the editors nor the publisher can accept any legal responsibility for any
errors or omissions that may be made. The publisher makes no warranty, express or implied, with respect
to the material contained herein.
Printed on acid-free paper
Springer is part of Springer Science+Business Media (www.springer.com)
To Suzanne
Preface
The great response to the publication of my book Classical and Modern Fourier
Analysis in 2004 has been especially gratifying to me. I was delighted when Springer
offered to publish the second edition in 2008 in two volumes: Classical Fourier
Analysis, 2nd Edition, and Modern Fourier Analysis, 2nd Edition. I am now elated
to have the opportunity to write the present third edition of these books, which
Springer has also kindly offered to publish. The third edition was born from my
desire to improve the exposition in several places, fix a few inaccuracies, and add
some new material. I have been very fortunate to receive several hundred e-mail
messages that helped me improve the proofs and locate mistakes and misprints in
the previous editions.
In this edition, I maintain the same style as in the previous ones. The proofs contain details that unavoidably make the reading more cumbersome. Although it will
behoove many readers to skim through the more technical aspects of the presentation and concentrate on the flow of ideas, the fact that details are present will be
comforting to some. (This last sentence is based on my experience as a graduate
student.) Readers familiar with the second edition will notice that the chapter on
weights has been moved from the second volume to the first.
This first volume Classical Fourier Analysis is intended to serve as a text for
a one-semester course with prerequisites of measure theory, Lebesgue integration,
and complex variables. I am aware that this book contains significantly more material than can be taught in a semester course; however, I hope that this additional
information will be useful to researchers. Based on my experience, the following list
of sections (or parts of them) could be taught in a semester without affecting the
logical coherence of the book: Sections 1.1, 1.2, 1.3, 2.1, 2.2., 2.3, 3.1, 3.2, 3.3, 4.4,
4.5, 5.1, 5.2, 5.3, 5.5, 5.6, 6.1, 6.2.
A long list of people have assisted me in the preparation of this book, but I remain
solely responsible for any misprints, mistakes, and omissions contained therein.
Please contact me directly ([email protected]) if you have corrections or comments. Any corrections to this edition will be posted to the website
http://math.missouri.edu/˜loukas/FourierAnalysis.html
vii
viii Preface
which I plan to update regularly. I have prepared solutions to all of the exercises for
the present edition which will be available to instructors who teach a course out of
this book.
Athens, Greece, Loukas Grafakos
March 2014
Acknowledgments
I am extremely fortunate that several people have pointed out errors, misprints, and
omissions in the previous editions of the books in this series. All these individuals
have provided me with invaluable help that resulted in the improved exposition of
the text. For these reasons, I would like to express my deep appreciation and sincere
gratitude to the all of the following people.
ix
First edition acknowledgements: Georgios Alexopoulos, Nakhle Asmar, Bruno ´
Calado, Carmen Chicone, David Cramer, Geoffrey Diestel, Jakub Duda, Brenda
Frazier, Derrick Hart, Mark Hoffmann, Steven Hofmann, Helge Holden, Brian
Hollenbeck, Petr Honz´ık, Alexander Iosevich, Tunde Jakab, Svante Janson, Ana
Jimenez del Toro, Gregory Jones, Nigel Kalton, Emmanouil Katsoprinakis, Dennis ´
Kletzing, Steven Krantz, Douglas Kurtz, George Lobell, Xiaochun Li, Jose Mar ´ ´ıa
Martell, Antonios Melas, Keith Mersman, Stephen Montgomery-Smith, Andrea
Nahmod, Nguyen Cong Phuc, Krzysztof Oleszkiewicz, Cristina Pereyra, Carlos
Perez, Daniel Redmond, Jorge Rivera-Noriega, Dmitriy Ryabogin, Christopher ´
Sansing, Lynn Savino Wendel, Shih-Chi Shen, Roman Shvidkoy, Elias M. Stein,
Atanas Stefanov, Terence Tao, Erin Terwilleger, Christoph Thiele, Rodolfo Torres,
Deanie Tourville, Nikolaos Tzirakis, Don Vaught, Igor Verbitsky, Brett Wick, James
Wright, and Linqiao Zhao.
Second edition acknowledgements: Marco Annoni, Pascal Auscher, Andrew
Bailey, Dmitriy Bilyk, Marcin Bownik, Juan Cavero de Carondelet Fiscowich,
Leonardo Colzani, Simon Cowell, Mita Das, Geoffrey Diestel, Yong Ding, Jacek
Dziubanski, Frank Ganz, Frank McGuckin, Wei He, Petr Honz´ık, Heidi Hulsizer,
Philippe Jaming, Svante Janson, Ana Jimenez del Toro, John Kahl, Cornelia Kaiser, ´
Nigel Kalton, Kim Jin Myong, Doowon Koh, Elena Koutcherik, David Kramer,
Enrico Laeng, Sungyun Lee, Qifan Li, Chin-Cheng Lin, Liguang Liu, Stig-Olof
Londen, Diego Maldonado, Jose Mar ´ ´ıa Martell, Mieczysław Mastyło, Parasar
Mohanty, Carlo Morpurgo, Andrew Morris, Mihail Mourgoglou, Virginia Naibo,
Tadahiro Oh, Marco Peloso, Maria Cristina Pereyra, Carlos Perez, Humberto Rafeiro, ´
Maria Carmen Reguera Rodr´ıguez, Alexander Samborskiy, Andreas Seeger, Steven
Senger, Sumi Seo, Christopher Shane, Shu Shen, Yoshihiro Sawano, Mark Spencer,
Vladimir Stepanov, Erin Terwilleger, Rodolfo H. Torres, Suzanne Tourville,
x Acknowledgments
Among all these people, I would like to give special thanks to an individual who
has studied extensively the two books in the series and has helped me more than
anyone else in the preparation of the third edition: Danqing He. I am indebted to him
for all the valuable corrections, suggestions, and constructive help he has provided
me with in this work. Without him, these books would have been a lot poorer.
Finally, I would also like to thank the University of Missouri for granting me
a research leave during the academic year 2013-2014. This time off enabled me to
finish the third edition of this book on time. I spent my leave in Greece.
Ignacio Uriarte-Tuero, Kunyang Wang, Huoxiong Wu, Kozˆ o Yabuta, Takashi ˆ
Yamamoto, and Dachun Yang.
Third edition acknowledgments: Marco Annoni, Mark Ashbaugh, Daniel
Azagra, Andrew Bailey, Arpad B ´ enyi, Dmitriy Bilyk, Nicholas Boros, Almut ´
Burchard, Mar´ıa Carro, Jameson Cahill, Juan Cavero de Carondelet Fiscowich,
Xuemei Chen, Andrea Fraser, Shai Dekel, Fausto Di Biase, Zeev Ditzian, Jianfeng
Dong, Oliver Dragicevi ˇ c, Sivaji Ganesh, Friedrich Gesztesy, Zhenyu Guo, Piotr ´
Hajłasz, Danqing He, Andreas Heinecke, Steven Hofmann, Takahisa Inui, Junxiong
Jia, Kasinathan Kamalavasanthi, Hans Koelsch, Richard Laugesen, Kaitlin Leach,
Andrei Lerner, Yiyu Liang, Calvin Lin, Liguang Liu, Elizabeth Loew, Chao Lu,
Richard Lynch, Diego Maldonado, Lech Maligranda, Richard Marcum, Mieczysław
Mastyło, Mariusz Mirek, Carlo Morpurgo, Virginia Naibo, Hanh Van Nguyen,
Seungly Oh, Tadahiro Oh, Yusuke Oi, Lucas da Silva Oliveira, Kevin O’Neil, Hesam
Oveys, Manos Papadakis, Marco Peloso, Carlos Perez, Jesse Peterson, Dmitry ´
Prokhorov, Amina Ravi, Maria Carmen Reguera Rodr´ıguez, Yoshihiro Sawano,
Mirye Shin, Javier Soria, Patrick Spencer, Marc Strauss, Krystal Taylor, Naohito
Tomita, Suzanne Tourville, Rodolfo H. Torres, Fujioka Tsubasa, Ignacio UriarteTuero, Brian Tuomanen, Shibi Vasudevan, Michael Wilson, Dachun Yang, Kai Yang,
Yandan Zhang, Fayou Zhao, and Lifeng Zhao.
Contents
1 Lp Spaces and Interpolation 1
1.1 Lp and Weak Lp ............................................ 1
1.1.1 The Distribution Function ............................. 3
1.1.2 Convergence in Measure .............................. 6
1.1.3 A First Glimpse at Interpolation ........................ 9
Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
1.2 Convolution and Approximate Identities . . . . . . . . . . . . . . . . . . . . . . . 17
1.2.1 Examples of Topological Groups . . . . . . . . . . . . . . . . . . . . . . . 18
1.2.2 Convolution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
1.2.3 Basic Convolution Inequalities . . . . . . . . . . . . . . . . . . . . . . . . . 21
1.2.4 Approximate Identities. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
1.3 Interpolation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
1.3.1 Real Method: The Marcinkiewicz Interpolation Theorem . . . 33
1.3.2 Complex Method: The Riesz–Thorin Interpolation
Theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
1.3.3 Interpolation of Analytic Families of Operators . . . . . . . . . . . 40
Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
1.4 Lorentz Spaces. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
1.4.1 Decreasing Rearrangements . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
1.4.2 Lorentz Spaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
1.4.3 Duals of Lorentz Spaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
1.4.4 The Off-Diagonal Marcinkiewicz Interpolation Theorem . . . 60
Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
2 Maximal Functions, Fourier Transform, and Distributions 85
2.1 Maximal Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86
2.1.1 The Hardy–Littlewood Maximal Operator. . . . . . . . . . . . . . . . 86
2.1.2 Control of Other Maximal Operators . . . . . . . . . . . . . . . . . . . . 90
xi
xii Contents
2.1.3 Applications to Differentiation Theory . . . . . . . . . . . . . . . . . . 93
Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98
2.2 The Schwartz Class and the Fourier Transform . . . . . . . . . . . . . . . . . . 104
2.2.1 The Class of Schwartz Functions . . . . . . . . . . . . . . . . . . . . . . . 105
2.2.2 The Fourier Transform of a Schwartz Function . . . . . . . . . . . 108
2.2.3 The Inverse Fourier Transform and Fourier Inversion . . . . . . 111
2.2.4 The Fourier Transform on L1 +L2 . . . . . . . . . . . . . . . . . . . . . . 113
Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116
2.3 The Class of Tempered Distributions . . . . . . . . . . . . . . . . . . . . . . . . . . 119
2.3.1 Spaces of Test Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119
2.3.2 Spaces of Functionals on Test Functions . . . . . . . . . . . . . . . . . 120
2.3.3 The Space of Tempered Distributions . . . . . . . . . . . . . . . . . . . 123
Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131
2.4 More About Distributions and the Fourier Transform . . . . . . . . . . . . . 133
2.4.1 Distributions Supported at a Point . . . . . . . . . . . . . . . . . . . . . . 134
2.4.2 The Laplacian . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135
2.4.3 Homogeneous Distributions . . . . . . . . . . . . . . . . . . . . . . . . . . . 136
Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143
2.5 Convolution Operators on Lp Spaces and Multipliers . . . . . . . . . . . . . 146
2.5.1 Operators That Commute with Translations . . . . . . . . . . . . . . 146
2.5.2 The Transpose and the Adjoint of a Linear Operator . . . . . . . 150
2.5.3 The Spaces M p,q(Rn) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151
2.5.4 Characterizations of M1,1(Rn) and M2,2(Rn). . . . . . . . . . . . 153
2.5.5 The Space of Fourier Multipliers Mp(Rn) . . . . . . . . . . . . . . . 155
Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159
2.6 Oscillatory Integrals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 161
2.6.1 Phases with No Critical Points . . . . . . . . . . . . . . . . . . . . . . . . . 161
2.6.2 Sublevel Set Estimates and the Van der Corput Lemma . . . . . 164
Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 169
3 Fourier Series 173
3.1 Fourier Coefficients . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 173
3.1.1 The n-Torus Tn . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 174
3.1.2 Fourier Coefficients . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 175
3.1.3 The Dirichlet and Fejer Kernels ´ . . . . . . . . . . . . . . . . . . . . . . . . 178
Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 182
3.2 Reproduction of Functions from Their Fourier Coefficients. . . . . . . . 183
3.2.1 Partial sums and Fourier inversion . . . . . . . . . . . . . . . . . . . . . . 183
3.2.2 Fourier series of square summable functions . . . . . . . . . . . . . 185
3.2.3 The Poisson Summation Formula . . . . . . . . . . . . . . . . . . . . . . . 187
Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 191
3.3 Decay of Fourier Coefficients . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 192
3.3.1 Decay of Fourier Coefficients of Arbitrary Integrable
Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 193
3.3.2 Decay of Fourier Coefficients of Smooth Functions. . . . . . . . 195
Contents xiii
3.3.3 Functions with Absolutely Summable Fourier
Coefficients . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 200
Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 202
3.4 Pointwise Convergence of Fourier Series . . . . . . . . . . . . . . . . . . . . . . . 204
3.4.1 Pointwise Convergence of the Fejer Means ´ . . . . . . . . . . . . . . . 204
3.4.2 Almost Everywhere Convergence of the Fejer Means ´ . . . . . . 207
3.4.3 Pointwise Divergence of the Dirichlet Means . . . . . . . . . . . . . 210
3.4.4 Pointwise Convergence of the Dirichlet Means. . . . . . . . . . . . 212
Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 214
3.5 A Tauberian theorem and Functions of Bounded Variation . . . . . . . . 216
3.5.1 A Tauberian theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 216
3.5.2 The sine integral function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 218
3.5.3 Further properties of functions of bounded variation . . . . . . . 219
3.5.4 Gibbs phenomenon. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 221
Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 225
3.6 Lacunary Series and Sidon Sets. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 226
3.6.1 Definition and Basic Properties of Lacunary Series . . . . . . . . 227
3.6.2 Equivalence of Lp Norms of Lacunary Series . . . . . . . . . . . . . 229
3.6.3 Sidon sets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 235
Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 237
4 Topics on Fourier Series 241
4.1 Convergence in Norm, Conjugate Function,
and Bochner–Riesz Means . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 241
4.1.1 Equivalent Formulations of Convergence in Norm . . . . . . . . . 242
4.1.2 The Lp Boundedness of the Conjugate Function . . . . . . . . . . . 246
4.1.3 Bochner–Riesz Summability . . . . . . . . . . . . . . . . . . . . . . . . . . . 250
Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 253
4.2 A. E. Divergence of Fourier Series and Bochner–Riesz means . . . . . 255
4.2.1 Divergence of Fourier Series of Integrable Functions . . . . . . 255
4.2.2 Divergence of Bochner–Riesz Means of Integrable
Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 261
Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 270
4.3 Multipliers, Transference, and Almost Everywhere Convergence . . . 271
4.3.1 Multipliers on the Torus. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 271
4.3.2 Transference of Multipliers . . . . . . . . . . . . . . . . . . . . . . . . . . . . 275
4.3.3 Applications of Transference . . . . . . . . . . . . . . . . . . . . . . . . . . . 280
4.3.4 Transference of Maximal Multipliers . . . . . . . . . . . . . . . . . . . . 281
4.3.5 Applications to Almost Everywhere Convergence . . . . . . . . . 285
4.3.6 Almost Everywhere Convergence of Square Dirichlet
Means . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 287
Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 289
xiv Contents
4.4 Applications to Geometry and Partial Differential Equations. . . . . . . 292
4.4.1 The Isoperimetric Inequality . . . . . . . . . . . . . . . . . . . . . . . . . . . 292
4.4.2 The Heat Equation with Periodic Boundary Condition . . . . . 294
Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 298
4.5 Applications to Number theory and Ergodic theory . . . . . . . . . . . . . . 299
4.5.1 Evaluation of the Riemann Zeta Function at even Natural
numbers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 299
4.5.2 Equidistributed sequences . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 302
4.5.3 The Number of Lattice Points inside a Ball . . . . . . . . . . . . . . . 305
Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 308
5 Singular Integrals of Convolution Type 313
5.1 The Hilbert Transform and the Riesz Transforms . . . . . . . . . . . . . . . . 313
5.1.1 Definition and Basic Properties of the Hilbert Transform . . . 314
5.1.2 Connections with Analytic Functions. . . . . . . . . . . . . . . . . . . . 317
5.1.3 Lp Boundedness of the Hilbert Transform . . . . . . . . . . . . . . . . 319
5.1.4 The Riesz Transforms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 324
Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 329
5.2 Homogeneous Singular Integrals and the Method of Rotations . . . . . 333
5.2.1 Homogeneous Singular and Maximal Singular Integrals . . . . 333
5.2.2 L2 Boundedness of Homogeneous Singular Integrals . . . . . . 336
5.2.3 The Method of Rotations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 339
5.2.4 Singular Integrals with Even Kernels. . . . . . . . . . . . . . . . . . . . 341
5.2.5 Maximal Singular Integrals with Even Kernels . . . . . . . . . . . 347
Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 353
5.3 The Calderon–Zygmund Decomposition and Singular Integrals ´ . . . . 355
5.3.1 The Calderon–Zygmund Decomposition ´ . . . . . . . . . . . . . . . . . 355
5.3.2 General Singular Integrals. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 358
5.3.3 Lr Boundedness Implies Weak Type (1,1) Boundedness. . . . 359
5.3.4 Discussion on Maximal Singular Integrals . . . . . . . . . . . . . . . 362
5.3.5 Boundedness for Maximal Singular Integrals Implies
Weak Type (1,1) Boundedness. . . . . . . . . . . . . . . . . . . . . . . . . 366
Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 371
5.4 Sufficient Conditions for Lp Boundedness . . . . . . . . . . . . . . . . . . . . . . 374
5.4.1 Sufficient Conditions for Lp Boundedness of Singular
Integrals. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 375
5.4.2 An Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 378
5.4.3 Necessity of the Cancellation Condition . . . . . . . . . . . . . . . . . 379
5.4.4 Sufficient Conditions for Lp Boundedness of Maximal
Singular Integrals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 380
Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 384
5.5 Vector-Valued Inequalities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 385
5.5.1 2-Valued Extensions of Linear Operators . . . . . . . . . . . . . . . . 386
5.5.2 Applications and r
-Valued Extensions of Linear
Operators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 390