Siêu thị PDFTải ngay đi em, trời tối mất

Thư viện tri thức trực tuyến

Kho tài liệu với 50,000+ tài liệu học thuật

© 2023 Siêu thị PDF - Kho tài liệu học thuật hàng đầu Việt Nam

cell cycle regulation - Ebook USA ( biotechnology)
PREMIUM
Số trang
381
Kích thước
4.9 MB
Định dạng
PDF
Lượt xem
1693

cell cycle regulation - Ebook USA ( biotechnology)

Nội dung xem thử

Mô tả chi tiết

Results and Problems in Cell Differentiation

42

Series Editors

D. Richter, H. Tiedge

Philipp Kaldis (Ed.)

Cell Cycle Regulation

With 26 Figures, 1 in Color, and 9 Tables

123

Philipp Kaldis, PhD

National Cancer Institute, NCI-Frederick

1050 Boyles Street

Bldg. 560

Frederick, MD 21702-1201

USA

ISSN 0080-1844

ISBN-10 3-540-34552-3 Springer Berlin Heidelberg New York

ISBN-13 978-3-540-34552-7 Springer Berlin Heidelberg New York

Library of Congress Control Number: 2006925965

This work is subject to copyright. All rights are reserved, whether the whole or part of the material

is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broad￾casting, reproduction on microfilm or in any other way, and storage in data banks. Duplication of

this publication or parts thereof is permitted only under the provisions of the German Copyright Law

of September 9, 1965, in its current version, and permission for use must always be obtained from

Springer. Violations are liable for prosecution under the German Copyright Law.

Springer is a part of Springer Science+Business Media

springer.com

c Springer-Verlag Berlin Heidelberg 2006

Printed in Germany

The use of registered names, trademarks, etc. in this publication does not imply, even in the absence

of a specific statement, that such names are exempt from the relevant protective laws and regulations

and therefore free for general use.

Cover design: Design & Production GmbH, Heidelberg

Typesetting and Production: LE-TEX Jelonek, Schmidt & Vöckler GbR, Leipzig

Printed on acid-free paper 31/3150/YL – 5 4 3 2 1 0

Preface

The cell cycle is tightly regulated on many different levels to ensure properly

controlled proliferation. In the last 20 years, through the contributions of

many laboratories, we have gained insight into many important aspects of

the regulation of the cell cycle and its relation to cancer, which culminated

in the 2001 Nobel Prize being awarded to Leland Hartwell, Tim Hunt, and

Paul Nurse. In the investigations of cell cycle regulation, it has been essential

to use different model systems from yeast to mouse, where the results from

one system have led to advances in another system. Recently, studies have been

done using more complex organisms like the mouse, which has taught us much

about redundancy and flexibility in the regulation of the cell cycle. Some of

the (even fundamental) results from yeast or mammalian cell lines had to be

revised since they were not completely applicable to complex animal systems.

It is a major challenge to keep an open mind when new results overthrow

established dogmas, especially since some of the dogmas have never been

backed by convincing experiments. This book will provide an updated view of

some of the most exciting areas of cell cycle regulation.

The chapters of this book have been written by experts in the cell cycle

field and cover topics ranging from yeast to mouse and from Rb to sterility. In

the first chapter Moeller and Sheaff review recent results regarding G1 phase

control, which might suggest that depending on the context or cell type, the

G1 phase control could be different. The second chapter by Teer and Dutta

deals with the regulation of DNA replication during the S phase. They discuss

the origin of replication complex, MCMs, and how they are controlled by

different factors. The next chapter, by Yang and Zou, reviews checkpoints and

the response to DNA damage, followed by a chapter by Hoffmann, which deals

with protein kinases that are involved in the regulation of the mitotic spindle

checkpoint. The regulation of the centrosome cycle is discussed in the chapter

by Mattison and Winey. In the sixth chapter Reed reviews the regulation of the

cellcyclebyubiquitin-mediateddegradation.The next chapter,by Dannenberg

and Te Riele, deals with the Rb family and its control of the cell cycle using

in vivo systems. Lili Yamasaki reviews the relations between cancer and the

Rb/E2F pathway in the eighth chapter and Hiroaki Kiyokawa then discusses

interactions of senescence and cell cycle control. Aleem and Kaldis follow with

new concepts obtained by studying mouse models of cell cycle regulators. In

VI Preface

the eleventh chapter Bernard and Eilers review the functions of Myc in the

control of cell growth and proliferation. The book concludes with a chapter

by Rajesh and Pittman, who discuss the relations of cell cycle regulators and

mammalian germ cells.

Thefuturechallengesincellcycleresearchwillbetointegrateourknowledge

coming from different systems, extend it to tumorigenesis in humans, and use

all this information to design clinically relevant studies. This cannot happen

in one step or overnight and will necessitate a lot of effort. It will continue

to require broad-based basic research, along with the development of relevant

animal models. These animal models need to recapitulate human diseases

as closely as possible. Currently, many questions remain regarding animals

being good models for human diseases. Nevertheless, more effort needs to

be expended in developing better animal models before conclusions can be

drawn. It is obvious that without appropriate animal models we will have to

continue to test newly developed drugs in clinical trials without knowing the

potential outcome. This is a time-consuming and risky procedure, which has

been going on for too long a time. The future of cell cycle research is bright and

the results of such studies will hopefully influence the battle against cancer.

This book could not have been completed without the outstanding contri￾butions from the authors and I would like to thank them all for their valuable

effort. In addition, I thank the members of the Kaldis lab as well as Michele

Pagano for encouragement and support. I also acknowledge the support of

Ursula Gramm, Sabine Schreck (Springer, Heidelberg), and Michael Reinfarth

(Le-TeX GbR, Leipzig) for editorial managing and production of this book.

March 2006 Philipp Kaldis

Contents

G1 Phase: Components, Conundrums, Context

Stephanie J. Moeller, Robert J. Sheaff ................ 1

1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . 1

2 Arrival of the Cycle . . . . . . . . . . . . . . . . . . . . . . . 2

2.1 Discrete Events during Division . . . . . . . . . . . . . . . . 2

2.2 Maintaining Order . . . . . . . . . . . . . . . . . . . . . . . 3

2.3 Cell Cycle Machinery . . . . . . . . . . . . . . . . . . . . . . 4

3 G1 Progression in Cultured Cells . . . . . . . . . . . . . . . . 5

3.1 Coordinating Cell Growth and Division . . . . . . . . . . . . 6

3.2 Information Integration . . . . . . . . . . . . . . . . . . . . 7

3.3 The Cyclin-Cdk Engine . . . . . . . . . . . . . . . . . . . . . 8

3.4 Removing Impediments: Inactivating Rb . . . . . . . . . . . 9

3.5 Removing Impediments: Inactivating p27kip1 . . . . . . . . . 10

3.6 Preparing for the Future . . . . . . . . . . . . . . . . . . . . 11

4 Ablating G1 Regulators in Mice . . . . . . . . . . . . . . . . 12

4.1 Cyclin D-Cdk4/6 . . . . . . . . . . . . . . . . . . . . . . . . 12

4.2 Cyclin E/Cdk2 . . . . . . . . . . . . . . . . . . . . . . . . . . 14

4.3 G1 Targets . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

5 Implications and Future Directions . . . . . . . . . . . . . . 19

5.1 Conundrums . . . . . . . . . . . . . . . . . . . . . . . . . . 19

5.2 G1 in Context . . . . . . . . . . . . . . . . . . . . . . . . . . 20

6 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

Regulation of S Phase

Jamie K. Teer, Anindya Dutta . . . . . . . . . . . . . . . . . . . . . 31

1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . 31

2 Origins of Replication . . . . . . . . . . . . . . . . . . . . . 32

2.1 Genome Replicator Sequences . . . . . . . . . . . . . . . . . 32

3 Pre-Replication Complex . . . . . . . . . . . . . . . . . . . . 35

3.1 ORC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

3.2 Cdt1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

3.3 Cdc6 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

VIII Contents

3.4 MCM2-7 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

3.5 Geminin . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

3.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

4 Pre-Initiation Complex . . . . . . . . . . . . . . . . . . . . . 43

4.1 Mcm10 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

4.2 Cdc45 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

4.3 Dbf4/Cdc7 . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

4.4 GINS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

4.5 DPB11 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

4.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

5 S-phase Regulation and Cancer . . . . . . . . . . . . . . . . 49

6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

Checkpoint and Coordinated Cellular Responses to DNA Damage

Xiaohong H. Yang, Lee Zou . . . . . . . . . . . . . . . . . . . . . . . 65

1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . 65

2 Sensing DNA Damage and DNA Replication Stress . . . . . . 66

2.1 Recruitment of ATR to DNA . . . . . . . . . . . . . . . . . . 66

2.2 DNA Damage Recognition

by the RFC- and PCNA-like Checkpoint Complexes . . . . . 69

2.3 Processing of DNA Lesions . . . . . . . . . . . . . . . . . . . 71

2.4 MRN Complex and Activation of ATM and ATR . . . . . . . 73

3 Transduction of DNA Damage Signals . . . . . . . . . . . . . 74

4 Regulation of Downstream Cellular Processes . . . . . . . . 76

4.1 Regulation of the Cell Cycle . . . . . . . . . . . . . . . . . . 77

4.2 Regulation of DNA Replication Forks . . . . . . . . . . . . . 78

4.3 Regulation of DNA Repair . . . . . . . . . . . . . . . . . . . 79

4.4 Regulation of Telomeres . . . . . . . . . . . . . . . . . . . . 80

5 Interplay between Checkpoint Signaling and Chromatin . . . 81

6 Perspectives . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

Protein Kinases Involved in Mitotic Spindle Checkpoint Regulation

Ingrid Hoffmann . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . 93

2 The Spindle Assembly Checkpoint . . . . . . . . . . . . . . . 94

3 Regulation of the Spindle Checkpoint by Protein Kinases . . 95

3.1 Bub1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

3.2 BubR1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

3.3 Aurora B . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

3.4 Mps1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

3.5 Mitogen-activated protein kinase . . . . . . . . . . . . . . . 102

4 The Spindle Checkpoint and Cancer . . . . . . . . . . . . . . 102

Contents IX

5 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

The Centrosome Cycle

Christopher P. Mattison, Mark Winey . . . . . . . . . . . . . . . . 111

1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . 111

1.1 History . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

1.2 Microtubule Organizing Centers . . . . . . . . . . . . . . . 112

1.3 Centrosome Functions . . . . . . . . . . . . . . . . . . . . . 112

1.4 Centrosome Dysfunction and Cancer/Disease . . . . . . . . 113

1.5 Centrosome Structure . . . . . . . . . . . . . . . . . . . . . 113

2 The Centrosome Cycle . . . . . . . . . . . . . . . . . . . . . 114

2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . 114

2.2 Centrosome Duplication . . . . . . . . . . . . . . . . . . . . 116

2.3 Centrosome Maturation . . . . . . . . . . . . . . . . . . . . 126

2.4 Centrosome Separation . . . . . . . . . . . . . . . . . . . . . 130

2.5 Licensing of Centrosome Duplication . . . . . . . . . . . . . 133

2.6 Post-Mitosis Return to G1 . . . . . . . . . . . . . . . . . . . 133

3 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . 134

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135

The Ubiquitin-Proteasome Pathway in Cell Cycle Control

Steven I. Reed . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147

1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . 147

2 The Ubiquitin-Proteasome Pathway . . . . . . . . . . . . . . 148

3 Protein-Ubiquitin Ligases in the Cell Cycle Core Machinery . 149

3.1 APC/C Protein-Ubiquitin Ligases . . . . . . . . . . . . . . . 151

3.2 APC/C Substrates and Biology . . . . . . . . . . . . . . . . . 154

3.3 APC/C and Meiosis . . . . . . . . . . . . . . . . . . . . . . . 156

3.4 SCF Protein-Ubiquitin Ligases . . . . . . . . . . . . . . . . . 156

3.5 SCF Substrates and Biology . . . . . . . . . . . . . . . . . . 157

3.6 Regulation of SCF Activity . . . . . . . . . . . . . . . . . . . 162

4 Checkpoint Control . . . . . . . . . . . . . . . . . . . . . . . 163

5 Atypical Roles of Proteasomes and Ubiquitylation . . . . . . 166

6 Deubiquitylating Enzymes . . . . . . . . . . . . . . . . . . . 167

7 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . 167

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 169

The Retinoblastoma Gene Family

in Cell Cycle Regulation and Suppression of Tumorigenesis

Jan-Hermen Dannenberg, Hein P. J. te Riele . . . . . . . . . . . . . 183

1 Cancer and Genetic Alterations . . . . . . . . . . . . . . . . 183

2 The pRb Cell Cycle Control Pathway:

Components and the Cancer Connection . . . . . . . . . . . 184

X Contents

3 Regulation of E2F Responsive Genes by pRb . . . . . . . . . 185

4 The Retinoblastoma Gene Family . . . . . . . . . . . . . . . 187

4.1 Rb Gene Family Members . . . . . . . . . . . . . . . . . . . 187

4.2 pRb Family Protein Structure . . . . . . . . . . . . . . . . . 187

4.3 Similar and Distinct Functions of the pRb Protein Family . . 188

4.4 pRb Family Mediated Regulation of E2F

by Cellular Localization . . . . . . . . . . . . . . . . . . . . 190

4.5 Regulation of E2F Mediated Gene Expression . . . . . . . . . 190

4.6 The pRb Family and the Cellular Response

Towards Growth-Inhibitory Signals . . . . . . . . . . . . . . 192

5 The pRb and p53 Pathway

in Senescence and Tumor Surveillance . . . . . . . . . . . . 193

5.1 Replicative Senescence . . . . . . . . . . . . . . . . . . . . . 193

5.2 Tumor Surveillance . . . . . . . . . . . . . . . . . . . . . . . 195

6 Interconnectivity between the pRb and p53 Pathway . . . . . 196

7 The Rb Gene Family in Tumor Suppression in Mice . . . . . 199

7.1 Mechanistic Insights in the Tumor Suppressive Role

of the Rb Gene Family . . . . . . . . . . . . . . . . . . . . . 205

8 Role of p107 and p130 in Human Cancer . . . . . . . . . . . 207

9 The Retinoblastoma Gene Family

in Differentiation and Tumorigenesis . . . . . . . . . . . . . 208

9.1 A Link between Pax, bHLH and Pocket Proteins

in Differentiation and Tumorigenesis . . . . . . . . . . . . . 209

9.2 Pax and bHLH Proteins

in Retina and Pulmonary Epithelium Development . . . . . 209

10 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . 210

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 211

Modeling Cell Cycle Control and Cancer with pRB Tumor Suppressor

Lili Yamasaki . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 227

1 Introduction and Background . . . . . . . . . . . . . . . . . 227

1.1 Epidemiology . . . . . . . . . . . . . . . . . . . . . . . . . . 227

1.2 Modeling Human Cancer in the Mouse . . . . . . . . . . . . 228

2 The Universality of the Cell Cycle . . . . . . . . . . . . . . . 230

3 The pRB Tumor Suppressor Pathway . . . . . . . . . . . . . 231

3.1 The Discovery of pRB . . . . . . . . . . . . . . . . . . . . . . 231

3.2 Upstream Regulators of pRB . . . . . . . . . . . . . . . . . . 232

3.3 Phenotype of Mice Lacking pRB Family Members . . . . . . 233

3.4 pRB Regulates Growth and Differentiation . . . . . . . . . . 236

4 The E2F/DP Transcription Factor Family . . . . . . . . . . . 237

4.1 E2F Target Genes and Repression . . . . . . . . . . . . . . . 237

4.2 Mice Deficient in E2F Family Members . . . . . . . . . . . . 238

5 Cyclin-dependent Kinases and their Inhibitors . . . . . . . . 240

5.1 Deregulation of Cyclins, Cdks and CKIs in Human Tumors . 240

Contents XI

5.2 Mice Deficient in Cyclins, Cdks and CKIs . . . . . . . . . . . 241

6 Links Between the pRB and p53 Tumor Suppressor Pathway . 243

7 Murine Models of Retinoblastoma . . . . . . . . . . . . . . . 245

8 Revising Cell Cycle Models . . . . . . . . . . . . . . . . . . . 246

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 248

Senescence and Cell Cycle Control

Hiroaki Kiyokawa . . . . . . . . . . . . . . . . . . . . . . . . . . . . 257

1 Senescence . . . . . . . . . . . . . . . . . . . . . . . . . . . 257

2 Role of the p53 Pathway in Senescence . . . . . . . . . . . . 258

3 Role of the Rb Pathway in Senescence . . . . . . . . . . . . . 260

4 The Role of the INK4A/ARF Locus in Senescence . . . . . . 262

5 Mouse Cells vs. Human Cells:

Roles of Reactive Oxygen Species and Telomere Attrition . . 263

6 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . 266

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 266

Mouse Models of Cell Cycle Regulators: New Paradigms

Eiman Aleem, Philipp Kaldis . . . . . . . . . . . . . . . . . . . . . . 271

1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . 271

2 History of the Cell Cycle Model . . . . . . . . . . . . . . . . 273

2.1 The Concept of Mammalian Cell Cycle Regulation . . . . . . 273

2.2 Lessons from Yeast . . . . . . . . . . . . . . . . . . . . . . . 273

2.3 Human Cdc2, Cdk2 and Cyclin E . . . . . . . . . . . . . . . 275

2.4 G1 Phase in Mammalian Cultured Cells . . . . . . . . . . . . 276

3 Mouse Models of Cell Cycle Regulators . . . . . . . . . . . . 279

3.1 Targeting of Individual Cell Cycle Regulators Results

in Embryonic Lethality . . . . . . . . . . . . . . . . . . . . . 279

3.2 Sterility . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 281

3.3 Mouse Models with Hematopoietic Defects . . . . . . . . . . 287

3.4 Mouse Models with Pancreatic Defects . . . . . . . . . . . . 289

3.5 Placental Defects and Endoreduplication . . . . . . . . . . . 291

4 Tumorigenesis in Mouse Models of Cell Cycle Regulators . . 294

4.1 Pituitary Tumors . . . . . . . . . . . . . . . . . . . . . . . . 294

4.2 Skin Cancer and Melanoma . . . . . . . . . . . . . . . . . . 298

4.3 Breast Cancer . . . . . . . . . . . . . . . . . . . . . . . . . . 298

4.4 Ovarian Tumors . . . . . . . . . . . . . . . . . . . . . . . . . 300

5 New Functions for Old Players . . . . . . . . . . . . . . . . . 301

5.1 Cdc2 Regulates S Phase Entry . . . . . . . . . . . . . . . . . 301

5.2 p27 Regulates the Rho Pathway . . . . . . . . . . . . . . . . 303

6 Genetic Interaction and Functional Complementation

of Cell Cycle Regulators . . . . . . . . . . . . . . . . . . . . . 304

6.1 Interactions of Cyclin D1 and p27 . . . . . . . . . . . . . . . 304

XII Contents

6.2 Functional Complementation of Cdc2 and Cdk2

in G1/S Phase Transition . . . . . . . . . . . . . . . . . . . . 305

6.3 Functional Cooperation Between Cdk2, Cdk4 and p27 . . . . 307

6.4 Compensation Between the D-type Cyclins . . . . . . . . . . 308

6.5 Interactions Between Cdk4 and Cdk6 . . . . . . . . . . . . . 309

6.6 Cyclin E Can Functionally Compensate for Cyclin D1 . . . . 310

7 Implications of Data from Cell Cycle Mouse Models

to Human Cancer . . . . . . . . . . . . . . . . . . . . . . . . 310

7.1 Cdk2 in Human Tumors and in Tumor Cell Lines . . . . . . . 311

8 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . 312

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 314

Control of Cell Proliferation and Growth by Myc Proteins

Sandra Bernard, Martin Eilers . . . . . . . . . . . . . . . . . . . . 329

1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . 329

2 Mechanisms of Myc Action . . . . . . . . . . . . . . . . . . . 332

3 Targets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 334

4 Checkpoints and Apoptosis . . . . . . . . . . . . . . . . . . 336

5 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . 337

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 338

Cell Cycle Regulation in Mammalian Germ Cells

Changanamkandath Rajesh, Douglas L. Pittman . . . . . . . . . 343

1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . 343

2 Cell Cycle Regulatory Genes

Required for Initiation and Maintenance of Meiosis . . . . . 353

3 Transcriptional and Translational Factors . . . . . . . . . . . 355

4 Cell Signaling . . . . . . . . . . . . . . . . . . . . . . . . . . 356

5 Cytoplasmic and Apoptotic Factors . . . . . . . . . . . . . . 357

6 Cell Cycle Regulation during Prophase I . . . . . . . . . . . . 358

7 Future Perspectives . . . . . . . . . . . . . . . . . . . . . . . 360

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 361

Subject Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 369

Results Probl Cell Differ (42)

P. Kaldis: Cell Cycle Regulation

DOI 10.1007/b136683/Published online: 6 July 2005 © Springer-Verlag Berlin Heidelberg 2005

G1 Phase: Components, Conundrums, Context

Stephanie J. Moeller1 · Robert J. Sheaff2 (✉)

1Corporate Research Materials Laboratory, 3M Center, Building 201-03-E-03,

St. Paul, MN 55144-1000, USA

2University of Minnesota Cancer Center, MMC 806, 420 Delaware Street SE,

Minneapolis, MN 55455, USA

sheaf004@tc.umn.edu

Abstract A eukaryotic cell must coordinate DNA synthesis and chromosomal segregation

to generate a faithful replica of itself. These events are confined to discrete periods desig￾nated synthesis (S) and mitosis (M), and are separated by two gap periods (G1 and G2).

A complete proliferative cycle entails sequential and regulated progression through G1, S,

G2, and M phases. During G1, cells receive information from the extracellular environ￾ment and determine whether to proliferate or to adopt an alternate fate. Work in yeast

and cultured mammalian cells has implicated cyclin dependent kinases (Cdks) and their

cyclin regulatory partners as key components controlling G1. Unique cyclin/Cdk com￾plexes are temporally expressed in response to extracellular signaling, whereupon they

phosphorylate specific targets to promote ordered G1 progression and S phase entry. Cy￾clins and Cdks are thought to be required and rate-limiting for cell proliferation because

manipulating their activity in yeast and cultured mammalian cells alters G1 progression.

However, recent evidence suggests that these same components are not necessarily re￾quired in developing mouse embryos or cells derived from them. The implications of

these intriguing observations for understanding G1 progression and its regulation are

discussed.

1

Introduction

“All theory is grey, life’s golden tree alone is green.”

Johann Wolfgang von Goethe

Ever since the cell was designated the fundamental unit of living organisms,

efforts have been increasingly devoted to solving the mystery of its propaga￾tion. Physical observation in diverse systems, from simple unicellular bacteria

to complex multicellular animals, revealed that this process involves dupli￾cating cellular contents followed by division into two identical cells (Nurse

2000a).

Cell cycle theory is a generalized conceptual framework for describing how

a eukaryotic cell copies itself by coordinating an increase in mass, chromo￾some replication/segregation, and division (Mitchison 1971). Over the past

2 S.J. Moeller · R.J. Sheaff

3 decades, the machinery controlling these processes has been identified and

organized into a description of cell cycle progression. Now that the field has

its Nobel Prize, one might assume that the picture is largely complete and

only details remain. A broader perspective, however, reminds us that those

who ignore the history of scientific advancement are often doomed not to re￾peat it. That the cell cycle field will be no exception is evidenced by surprising

new observations hinting that it might be time to start a new canvas.

This chapter will first undertake an examination of how cell cycle theory

developed, which reveals the rationale for G1 phase and its role in cell divi￾sion. We next lay out in broad strokes the current understanding of molecular

events controlling G1 progression in mammalian cells. Principles and gener￾alizations underlying this model will be explicitly identified and discussed,

with particular emphasis on how they are now being called into question by

recent experimental data analyzing cell cycle regulators in mice. Ultimately,

we hope to illustrate how accumulating evidence provides hints of a richer

and more complex picture of G1 phase waiting to be discovered.

2

Arrival of the Cycle

Discovery of cell division marked the birth of cell cycle research (Nurse

2000b). Subsequent investigations identified two major events during this

process, mitosis and DNA replication, and demonstrated they occur at differ￾ent times and in a particular order. The existence of gap phases and why they

separate these key events has long been appreciated, but molecular mechan￾isms defining transitions between them could not be investigated until cell

cycle machinery was identified.

2.1

Discrete Events during Division

Physical observation of animal cell duplication identified discrete events dur￾ing this process, the most dramatic being condensation of thread-like struc￾tures shortly before cell division (Flemming 1965). We now know this period

as mitosis, when the chromosomes segregate and are equally distributed to

the mother and daughter cell. Subsequent work revealed chromosomes con￾tain the hereditary material, are composed of DNA, and are duplicated at

a defined period occurring before cell division (Nurse 2000a). These initial

observations suggested that cell duplication is divided into discrete periods or

phases, an organizing principle distinguishing bacteria from eukaryotic cells.

Molecular mechanisms are therefore required to coordinate these processes

in time and space.

Tải ngay đi em, còn do dự, trời tối mất!